Mickael Castro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7034665/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of a new bioâ€based and biodegradable blends of poly(3â€hydroxybutyrateâ€coâ€3â€hydroxyvalerate) and poly(butyleneâ€coâ€succinateâ€coâ€adipate). Journal Applied Polymer Science, 2022, 139, .	ofi.3	10
2	A Review of Nanocarbon-Based Solutions for the Structural Health Monitoring of Composite Parts Used in Renewable Energies. Journal of Composites Science, 2022, 6, 32.	1.4	8
3	Matrix stiffness: A key parameter to control hydro-elasticity and morphing of 3D printed biocomposite. Composites Part A: Applied Science and Manufacturing, 2022, 156, 106882.	3.8	12
4	Impact and strain monitoring in glass fiber reinforced epoxy laminates with embedded quantum resistive sensors (QRSs). Composites Science and Technology, 2022, 221, 109352.	3.8	5
5	A Review of In-Service Coating Health Monitoring Technologies: Towards "Smart―Neural-Like Networks for Condition-Based Preventive Maintenance. Coatings, 2022, 12, 565.	1.2	0
6	Strain Mapping and Damage Tracking in Carbon Fiber Reinforced Epoxy Composites during Dynamic Bending Until Fracture with Quantum Resistive Sensors in Array. Journal of Composites Science, 2021, 5, 60.	1.4	3
7	Boosting Selectivity and Sensitivity to Biomarkers of Quantum Resistive Vapour Sensors Used for Volatolomics with Nanoarchitectured Carbon Nanotubes or Graphene Platelets Connected by Fullerene Junctions. Chemosensors, 2021, 9, 66.	1.8	3
8	Tri-molybdenum phosphide (Mo3P) and multi-walled carbon nanotube junctions for volatile organic compounds (VOCs) detection. Applied Physics Letters, 2021, 119, .	1.5	4
9	Upgrading of diesel engine exhaust waste into onion-like carbon nanoparticles for integrated degradation sensing in nano-biocomposites. New Journal of Chemistry, 2021, 45, 3675-3682.	1.4	26
10	4D printing of continuous flax-fibre based shape-changing hygromorph biocomposites: Towards sustainable metamaterials. Materials and Design, 2021, 211, 110158.	3.3	35
11	Graphene and metal organic frameworks (MOFs) hybridization for tunable chemoresistive sensors for detection of volatile organic compounds (VOCs) biomarkers. Carbon, 2020, 159, 333-344.	5.4	97
12	Tailoring the mechanical properties of 3D-printed continuous flax/PLA biocomposites by controlling the slicing parameters. Composites Part B: Engineering, 2020, 203, 108474.	5.9	55
13	Enhanced detection of volatile organic compounds (VOCs) by caffeine modified carbon nanotube junctions. Nano Structures Nano Objects, 2020, 24, 100578.	1.9	6
14	3D sprayed polyurethane functionalized graphene / carbon nanotubes hybrid architectures to enhance the piezo-resistive response of quantum resistive pressure sensors. Carbon, 2020, 168, 564-579.	5.4	28
15	A review of 3D and 4D printing of natural fibre biocomposites. Materials and Design, 2020, 194, 108911.	3.3	146
16	Bioinspired Electroâ€Thermoâ€Hygro Reversible Shapeâ€Changing Materials by 4D Printing. Advanced Functional Materials, 2019, 29, 1903280.	7.8	64
17	Hygromechanical properties of 3D printed continuous carbon and glass fibre reinforced polyamide composite for outdoor structural applications. Additive Manufacturing, 2019, 26, 94-105.	1.7	89
18	3D printing of continuous flax fibre reinforced biocomposites for structural applications. Materials and Design, 2019, 180, 107884.	3.3	171

#	Article	IF	CITATIONS
19	Multifunctional Carbon Nanotubes Enhanced Structural Composites with Improved Toughness and Damage Monitoring. Journal of Composites Science, 2019, 3, 109.	1.4	10
20	Study of hygroscopic stresses in asymmetric biocomposite laminates. Composites Science and Technology, 2019, 169, 7-15.	3.8	29
21	Humidity responsive actuation of bioinspired hygromorph biocomposites (HBC) for adaptive structures. Composites Part A: Applied Science and Manufacturing, 2019, 116, 36-45.	3.8	42
22	Biocomposites with Asymmetric Stacking for the Study of Hygro-mechanical Couplings. Revue Des Composites Et Des Materiaux Avances, 2019, 29, 243-252.	0.2	1
23	Green carbon nanostructured quantum resistive sensors to detect volatile biomarkers. Sustainable Materials and Technologies, 2018, 16, 1-11.	1.7	40
24	Crossed investigation of damage in composites with embedded quantum resistive strain sensors (sQRS), acoustic emission (AE) and digital image correlation (DIC). Composites Science and Technology, 2018, 160, 79-85.	3.8	32
25	An Electronic Nose Prototype for the On-Field Detection of Nerve Agents. , 2018, , .		2
26	A functionalized carbon nanotube based electronic nose for the detection of nerve agents. , 2018, , .		1
27	Interfacial nanocomposite sensors (sQRS) for the core monitoring of polymer composites' fatigue and damage analysis. Nanocomposites, 2018, 4, 69-79.	2.2	7
28	Influence of Water Molecules on the Detection of Volatile Organic Compounds (VOC) Cancer Biomarkers by Nanocomposite Quantum Resistive Vapor Sensors vQRS. Chemosensors, 2018, 6, 64.	1.8	12
29	Hygromorph BioComposites: Effect of fibre content and interfacial strength on the actuation performances. Industrial Crops and Products, 2017, 99, 142-149.	2.5	33
30	Sulfonated poly(ether ether ketone) [SPEEK] nanocomposites based on hybrid nanocarbons for the detection and discrimination of some lung cancer VOC biomarkers. Journal of Materials Chemistry B, 2017, 5, 348-359.	2.9	31
31	Natural fibres actuators for smart bio-inspired hygromorph biocomposites. Smart Materials and Structures, 2017, 26, 125009.	1.8	58
32	Characterization of metal, semiconductor, and metal-semiconductor core–shell nanostructures. , 2017, , 51-77.		5
33	vQRS Based on Hybrids of CNT with PMMA-POSS and PS-POSS Copolymers to Reach the Sub-PPM Detection of Ammonia and Formaldehyde at Room Temperature Despite Moisture. Chemosensors, 2017, 5, 22.	1.8	12
34	Vapor and Pressure Sensors Based on Cellulose Nanofibers and Carbon Nanotubes Aerogel with Thermoelectric Properties. Journal of Renewable Materials, 2017, , .	1.1	8
35	Evaluation of force generation mechanisms in natural, passive hydraulic actuators. Scientific Reports, 2016, 6, 18105.	1.6	53
36	Flax fibers – epoxy with embedded nanocomposite sensors to design lightweight smart bio-composites. Nanocomposites, 2016, 2, 125-134.	2.2	37

#	Article	IF	CITATIONS
37	Enhancing the sensitivity of graphene/polyurethane nanocomposite flexible piezo-resistive pressure sensors with magnetite nano-spacers. Carbon, 2016, 108, 450-460.	5.4	87
38	Chemical Sensors Based on New Polyamides Biobased on (Z) Octadecâ€9â€Enedioic Acid and β yclodextrin. Macromolecular Chemistry and Physics, 2016, 217, 1620-1628.	1.1	18
39	Robustness of carbon nanotube-based sensor to probe composites' interfacial damage in situ. Journal of Composite Materials, 2016, 50, 109-113.	1.2	15
40	Non-intrusive health monitoring of infused composites with embedded carbon quantum piezo-resistive sensors. Composites Science and Technology, 2016, 123, 286-294.	3.8	71
41	3D printing of wood fibre biocomposites: From mechanical to actuation functionality. Materials and Design, 2016, 96, 106-114.	3.3	368
42	Engineering of graphene/epoxy nanocomposites with improved distribution of graphene nanosheets for advanced piezo-resistive mechanical sensing. Journal of Materials Chemistry C, 2016, 4, 3422-3430.	2.7	62
43	Spray layer-by-layer assembly of POSS functionalized CNT quantum chemo-resistive sensors with tuneable selectivity and ppm resolution to VOC biomarkers. Sensors and Actuators B: Chemical, 2016, 222, 362-373.	4.0	42
44	Gas barrier efficiency of clay- and graphene-poly(isobutylene-co-isoprene) nanocomposite membranes evidenced by a quantum resistive vapor sensor cell. Nanocomposites, 2015, 1, 96-105.	2.2	7
45	Flax/polypropylene composites for lightened structures: Multiscale analysis of process and fibre parameters. Materials and Design, 2015, 87, 331-341.	3.3	47
46	Tailoring selectivity of sprayed carbon nanotube sensors (CNT) towards volatile organic compounds (VOC) with surfactants. Sensors and Actuators B: Chemical, 2015, 220, 840-849.	4.0	52
47	Hybrid Films of Graphene and Carbon Nanotubes for High Performance Chemical and Temperature Sensing Applications. Small, 2015, 11, 3485-3493.	5.2	54
48	Graphene Filled Polymers for Vapor/Gas Sensor Applications. , 2015, , 253-275.		1
49	Moisture-induced self-shaping flax-reinforced polypropylene biocomposite actuator. Industrial Crops and Products, 2015, 71, 1-6.	2.5	55
50	High stability silver nanoparticles–graphene/poly(ionic liquid)-based chemoresistive sensors for volatile organic compounds' detection. Analytical and Bioanalytical Chemistry, 2014, 406, 3995-4004.	1.9	50
51	Graphene–Fe3O4/PIL–PEDOT for the design of sensitive and stable quantum chemo-resistive VOC sensors. Carbon, 2014, 74, 104-112.	5.4	59
52	Ultrasensitive QRS made by supramolecular assembly of functionalized cyclodextrins and graphene for the detection of lung cancer VOC biomarkers. Journal of Materials Chemistry B, 2014, 2, 6571-6579.	2.9	48
53	Selectivity of Chemoresistive Sensors Made of Chemically Functionalized Carbon Nanotube Random Networks for Volatile Organic Compounds (VOC). Chemosensors, 2014, 2, 26-40.	1.8	27
54	An e-nose made of carbon nanotube based quantum resistive sensors for the detection of eighteen polar/nonpolar VOC biomarkers of lung cancer. Journal of Materials Chemistry B, 2013, 1, 4563.	2.9	115

#	Article	IF	CITATIONS
55	Hybrid film of chemically modified graphene and vapor-phase-polymerized PEDOT for electronic nose applications. Organic Electronics, 2013, 14, 2789-2794.	1.4	32
56	Flexible latex—polyaniline segregated network composite coating capable of measuring large strain on epoxy. Smart Materials and Structures, 2013, 22, 015008.	1.8	31
57	Development of poly(isobutylene-co-isoprene)/reduced graphene oxide nanocomposites for barrier, dielectric and sensingapplications. Materials Letters, 2013, 96, 109-112.	1.3	110
58	Simple technique for the simultaneous determination of solvent diffusion coefficient in polymer by Quantum Resistive Sensors and FTâ€IR spectroscopy. Polymers for Advanced Technologies, 2013, 24, 487-494.	1.6	12
59	Effects of Cysteine Proteases on the Structural and Mechanical Properties of Collagen Fibers. Journal of Biological Chemistry, 2013, 288, 5940-5950.	1.6	80
60	Sensing Skin for Strain Monitoring Made of PC–CNT Conductive Polymer Nanocomposite Sprayed Layer by Layer. ACS Applied Materials & Interfaces, 2012, 4, 3508-3516.	4.0	65
61	Graphene quantum resistive sensing skin for the detection of alteration biomarkers. Journal of Materials Chemistry, 2012, 22, 21754.	6.7	115
62	Electronic noses for VOCs detection based on the nanoparticles hybridized graphene composites. , 2012, , .		4
63	Fine control of carbon nanotubes–polyelectrolyte sensors sensitivity by electrostatic layer by layer assembly (eLbL) for the detection of volatile organic compounds (VOC). Talanta, 2012, 88, 396-402.	2.9	47
64	Controlled conductive junction gap for chitosan–carbon nanotube quantum resistive vapour sensors. Journal of Materials Chemistry, 2012, 22, 10656.	6.7	50
65	Tailoring the chemo-resistive response of self-assembled polysaccharide-CNT sensors by chain conformation at tunnel junctions. Carbon, 2012, 50, 3627-3634.	5.4	38
66	Poly(lactic acid)–multi-wall carbon nanotube conductive biopolymer nanocomposite vapour sensors. Sensors and Actuators B: Chemical, 2012, 161, 621-628.	4.0	127
67	Polymer–carbon nanotube conductive nanocomposites for sensing. , 2011, , 760-803.		5
68	Novel architecture of carbon nanotube decorated poly(methyl methacrylate) microbead vapour sensors assembled by spray layer by layer. Journal of Materials Chemistry, 2011, 21, 4142.	6.7	67
69	Novel e-nose for the discrimination of volatile organic biomarkers with an array of carbon nanotubes (CNT) conductive polymer nanocomposites (CPC) sensors. Sensors and Actuators B: Chemical, 2011, 159, 213-219.	4.0	103
70	Effect of radial flow in the die entrance region on gross melt fracture of PDMS extrudate. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 661-666.	1.0	9
71	Chemo-sensitivity of latex-based films containing segregated networks of carbon nanotubes. Sensors and Actuators B: Chemical, 2011, 155, 28-36.	4.0	36
72	Polyaniline nanoparticle–carbon nanotube hybrid network vapour sensors with switchable chemo-electrical polarity. Nanotechnology, 2010, 21, 255501.	1.3	46

#	Article	IF	CITATIONS
73	Comparison of methods to measure yield stress of soft solids. Journal of Rheology, 2010, 54, 81-94.	1.3	28
74	Conductive bio-Polymer nano-Composites (CPC): Chitosan-carbon nanotube transducers assembled via spray layer-by-layer for volatile organic compound sensing. Talanta, 2010, 81, 908-915.	2.9	101
75	Conductive Polymer nano-bioComposites (CPC): Chitosan-carbon nanoparticle a good candidate to design polar vapour sensors. Sensors and Actuators B: Chemical, 2009, 138, 138-147.	4.0	115
76	Vapour sensing with conductive polymer nanocomposites (CPC): Polycarbonate-carbon nanotubes transducers with hierarchical structure processed by spray layer by layer. Sensors and Actuators B: Chemical, 2009, 140, 451-460.	4.0	82
77	Carbon nanotubes/poly(ε-caprolactone) composite vapour sensors. Carbon, 2009, 47, 1930-1942.	5.4	157
78	Influence of carbon nanotube grafting on chemo-electrical properties of Conductive Polymer nanoComposites. Materials Research Society Symposia Proceedings, 2008, 1143, 20201.	0.1	1
79	Thermo- and chemo-electrical behavior of carbon nanotube filled co-continuous conductive polymer nanocomposites (CPC) to develop amperometric sensors. Materials Research Society Symposia Proceedings, 2008, 1143, 51401.	0.1	4
80	Conducting Polymer nanoComposites (CPC): Nanocharacterisation of layer by layer sprayed PMMA-CNT vapour sensors by Atomic force Microscopy in current Sensing Mode (CS-AFM). Materials Research Society Symposia Proceedings, 2008, 1143, 20601.	0.1	1
81	Thermal degradation during melt processing of poly(ethylene oxide), poly(vinylidenefluoride-co-hexafluoropropylene) and their blends in the presence of additives, for conducting applications. Polymer Degradation and Stability, 2006, 91, 634-640.	2.7	36
82	Cocontinuity in immiscible polymer blends: A gel approach. Journal of Rheology, 2005, 49, 149-160.	1.3	31
83	Co-continuity interval in immiscible polymer blends by dynamic mechanical spectroscopy in the molten and solid state. Rheologica Acta, 2004, 43, 417-426.	1.1	38
84	Experimental and theoretical description of low frequency viscoelastic behaviour in immiscible polymer blends. Polymer, 2004, 45, 4095-4104.	1.8	58
85	Development of Nanocomposites Quantum Resistive Sensors (QRS) for the Structural Health Monitoring (SHM) of Composite for Wind Turbine Applications. , 0, , .		1