José Torres Farinha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7034609/publications.pdf Version: 2024-02-01

LOSÃO TOPPES EADINHA

#	Article	IF	CITATIONS
1	Augmented Reality Maintenance Assistant Using YOLOv5. Applied Sciences (Switzerland), 2021, 11, 4758.	2.5	68
2	Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press. Energies, 2021, 14, 6958.	3.1	44
3	Condition Monitoring with Prediction Based on Diesel Engine Oil Analysis: A Case Study for Urban Buses. Actuators, 2019, 8, 14.	2.3	36
4	A comparative study of statistical and soft computing techniques for reliability prediction of automotive manufacturing. Applied Soft Computing Journal, 2021, 98, 106738.	7.2	35
5	Predicting condition based on oil analysis – A case study. Tribology International, 2019, 135, 65-74.	5.9	31
6	Wind Farm and Resource Datasets: A Comprehensive Survey and Overview. Energies, 2020, 13, 4702.	3.1	21
7	Anticipating Future Behavior of an Industrial Press Using LSTM Networks. Applied Sciences (Switzerland), 2021, 11, 6101.	2.5	20
8	The State of the Art of Hidden Markov Models for Predictive Maintenance of Diesel Engines. Quality and Reliability Engineering International, 2017, 33, 2765-2779.	2.3	17
9	Calibration and Certification of Industrial Sensors – a Global Review. WSEAS Transactions on Systems and Control, 2020, 15, 394-416.	0.8	14
10	Development of a risk-based maintenance decision making approach for automotive production line. International Journal of Systems Assurance Engineering and Management, 2020, 11, 236-251.	2.4	13
11	Maintenance Prediction through Sensing Using Hidden Markov Models—A Case Study. Applied Sciences (Switzerland), 2021, 11, 7685.	2.5	13
12	An Integrated Fuzzy Fault Tree Model with Bayesian Network-Based Maintenance Optimization of Complex Equipment in Automotive Manufacturing. Energies, 2021, 14, 7758.	3.1	12
13	Dimensioning reserve bus fleet using life cycle cost models and condition based/predictive maintenance: a case study. Public Transport, 2018, 10, 169-190.	2.7	11
14	An integrated econometric model for bus replacement and determination of reserve fleet size based on predictive maintenance. Eksploatacja l Niezawodnosc, 2017, 19, 358-368.	2.0	11
15	Optimizing the Life Cycle of Physical Assets through an Integrated Life Cycle Assessment Method. Energies, 2021, 14, 6128.	3.1	10
16	Sustainable Food Production: An Intelligent Fault Diagnosis Framework for Analyzing the Risk of Critical Processes. Sustainability, 2022, 14, 1083.	3.2	10
17	Short and long forecast to implement predictive maintenance in a pulp industry. Eksploatacja I Niezawodnosc, 2022, 24, 33-41.	2.0	10
18	Measuring the production performance indicators for food processing industry. Measurement: Journal of the International Measurement Confederation, 2021, 173, 108394.	5.0	9

José Torres Farinha

#	Article	IF	CITATIONS
19	Maintenance planning in wind farms with allocation of teams using genetic algorithms. IEEE Latin America Transactions, 2014, 12, 1062-1070.	1.6	8
20	Augmented reality and the future of maintenance. , 2014, , 81-88.		8
21	Maintenance strategies to reduce downtime due to machine positional errors. , 2014, , 111-118.		8
22	Predictive Maintenance Tools – A Global Survey. WSEAS Transactions on Systems and Control, 2021, 16, 96-109.	0.8	7
23	Production Optimization versus Asset Availability – a Review. WSEAS Transactions on Systems and Control, 2020, 15, 320-332.	0.8	7
24	An improved risk and reliability framework-based maintenance planning for food processing systems. Quality Technology and Quantitative Management, 2023, 20, 256-278.	1.9	7
25	Life Cycle Cost versus Life Cycle Investment – A new Approach. WSEAS Transactions on Systems and Control, 2020, 15, 743-753.	0.8	5
26	On-condition maintenance for wind turbines. , 2009, , .		4
27	An Integrated Model for Dimensioning the Reserve Fleet based on the Maintenance Policy. WSEAS Transactions on Systems and Control, 2021, 16, 43-65.	0.8	4
28	Contributions of Petri Nets to the Reliability and Availability of an Electrical Power System in a Big European Hospital - A Case Study. WSEAS Transactions on Systems and Control, 2021, 16, 21-42.	0.8	4
29	Certification of maintenance providers: a competitive advantage. Journal of Quality in Maintenance Engineering, 2013, 19, 144-156.	1.7	3
30	Augmented reality system for maintenance of high-voltage systems. , 2016, , .		3
31	Economic life cycle of the bus fleet: a case study. International Journal of Heavy Vehicle Systems, 2019, 26, 31.	0.2	3
32	Increasing the Reliability of an Electrical Power System in a Big European Hospital through the Petri Nets and Fuzzy Inference System Mamdani Modelling. Applied Sciences (Switzerland), 2021, 11, 2604.	2.5	3
33	Time replacement optimization models for urban transportation buses with indexation to fleet reserve. , 2014, , 41-48.		3
34	Stochastic versus Fuzzy Models—A Discussion Centered on the Reliability of an Electrical Power Supply System in a Large European Hospital. Energies, 2022, 15, 1024.	3.1	3
35	Integrating low cost platforms on electrical power systems for control and condition monitoring. , 2016, , .		2
36	Economic life cycle of the bus fleet: a case study. International Journal of Heavy Vehicle Systems, 2019, 26, 31.	0.2	2

#	Article	IF	CITATIONS
37	Maintenance of Electromedicine Equipment: A Case Study Based on Outsourcing. , 2019, , .		1
38	Maintenance management in Web ASP.NET MVC applications. , 2014, , 95-101.		1
39	The Convergence between Predictive Maintenance and Augmented Reality to Aid Renewable Energy Equipment Availability. International Journal on Engineering Applications, 2014, 2, 152.	0.1	1
40	Know-How Retention and Divulgation with a Fuzzy CBR System. , 2007, , .		0
41	Mobile Applications and its Potential to Maintenance. , 2014, , 103-110.		0
42	Incorporating carbon penalties into supplier selection in the supply chain. , 2014, , 213-220.		0
43	Predictive maintenance!: to do or let die. , 2014, , 35-39.		0
44	Individual Electronic Pill Dispenser - ePillbox. International Journal on Engineering Applications, 2014, 2, 142.	0.1	0
45	Electric Motors Maintenance Planning From Its Operating Variables. Management Systems in Production Engineering, 2017, 25, 205-216.	1.1	0
46	Know-How Retention and Divulgation with a Fuzzy CBR System. , 2007, , .		0