Enric Bertran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7034410/publications.pdf

Version: 2024-02-01

228 papers

4,267 citations

32 h-index 50 g-index

232 all docs

232 docs citations

times ranked

232

4609 citing authors

#	Article	IF	CITATIONS
1	Insights into the inherent properties of vertical graphene flakes towards hydrogen evolution reaction. Applied Surface Science, 2022, 592, 153327.	3.1	19
2	Boost of Charge Storage Performance of Graphene Nanowall Electrodes by Laser-Induced Crystallization of Metal Oxide Nanostructures. ACS Applied Materials & Interfaces, 2021, 13, 17957-17970.	4.0	10
3	Homogeneous Fe ₂ O ₃ coatings on carbon nanotube structures for supercapacitors. Dalton Transactions, 2020, 49, 4136-4145.	1.6	16
4	Super-Capacitive Performance of Manganese Dioxide/Graphene Nano-Walls Electrodes Deposited on Stainless Steel Current Collectors. Materials, 2019, 12, 483.	1.3	21
5	Liquid switchable radial polarization converters made of sculptured thin films. Applied Surface Science, 2019, 475, 230-236.	3.1	3
6	Effect of temperature on graphene grown by chemical vapor deposition. Journal of Materials Science, 2017, 52, 8348-8356.	1.7	55
7	Laser-induced nanostructuration of vertically aligned carbon nanotubes coated with nickel oxide nanoparticles. Journal of Materials Science, 2017, 52, 4002-4015.	1.7	16
8	Laser-driven coating of vertically aligned carbon nanotubes with manganese oxide from metal organic precursors for energy storage. Nanotechnology, 2017, 28, 395405.	1.3	4
9	MAPLE synthesis of reduced graphene oxide/silver nanocomposite electrodes: Influence of target composition and gas ambience. Journal of Alloys and Compounds, 2017, 726, 1003-1013.	2.8	14
10	Evaluation of Graphene/WO3 and Graphene/CeO x Structures as Electrodes for Supercapacitor Applications. Nanoscale Research Letters, 2017, 12, 635.	3.1	22
11	New Three-Dimensional Porous Electrode Concept: Vertically-Aligned Carbon Nanotubes Directly Grown on Embroidered Copper Structures. Nanomaterials, 2017, 7, 438.	1.9	9
12	Size Control of Carbon Encapsulated Iron Nanoparticles by Arc Discharge Plasma Method. Applied Sciences (Switzerland), 2017, 7, 26.	1.3	15
13	Effect of a Balanced Concentration of Hydrogen on Graphene CVD Growth. Journal of Nanomaterials, 2016, 2016, 1-10.	1.5	24
14	Effect of pressure and hydrogen flow in nucleation density and morphology of graphene bidimensional crystals. Materials Research Express, 2016, 3, 075603.	0.8	18
15	Control of the Strain in Chemical Vapor Deposition-Grown Graphene over Copper via H ₂ Flow. Journal of Physical Chemistry C, 2016, 120, 25572-25577.	1.5	15
16	Vertically aligned carbon nanotubes as anode and air-cathode in single chamber microbial fuel cells. Applied Physics Letters, 2016, 109, 163904.	1.5	5
17	Synthesis of Carbon Encapsulated Mono- and Multi-Iron Nanoparticles. Journal of Nanomaterials, 2015, 2015, 1-10.	1.5	7
18	Optical security verification by synthesizing thin films with unique polarimetric signatures. Optics Letters, 2015, 40, 5399.	1.7	14

#	Article	IF	CITATIONS
19	Vertically aligned carbon nanotubes coated with manganese dioxide as cathode material for microbial fuel cells. Journal of Materials Science, 2015, 50, 1214-1220.	1.7	25
20	Growth and Plasma Functionalization of Carbon Nanotubes. Journal of Cluster Science, 2015, 26, 315-336.	1.7	16
21	Mueller matrix microscopy on a <i>Morpho</i> butterfly. Journal of Physics: Conference Series, 2015, 605, 012008.	0.3	8
22	Conversion of a polarization microscope into a Mueller matrix microscope. Application to the measurement of textile fibers. Optica Pura Y Aplicada, 2015, 48, 309-316.	0.0	7
23	Growth and functionalization of CNTs on stainless steel electrodes for supercapacitor applications. Materials Research Express, 2014, 1, 035050.	0.8	13
24	Arc-Discharge Synthesis of Iron Encapsulated in Carbon Nanoparticles for Biomedical Applications. Journal of Nanomaterials, 2014, 2014, 1-8.	1.5	14
25	Mueller matrix microscope with a dual continuous rotating compensator setup and digital demodulation. Applied Optics, 2014, 53, 2236.	0.9	104
26	Template growth of vertically aligned carbon nanotubes using self-assembled monolayers of SiO2 particles by Langmuir–Blodgett technique. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	1
27	3D distribution of magnetic CoNi alloy nanoparticles electrodeposited on vertically aligned MWCNT showing exceptional coercive field. Materials Letters, 2014, 124, 8-11.	1.3	2
28	Aqueous stabilisation of carbon-encapsulated superparamagnetic \hat{l}_{\pm} -iron nanoparticles for biomedical applications. Dalton Transactions, 2014, 43, 13764-13775.	1.6	9
29	RF-PECVD growth and nitrogen plasma functionalization of CNTs on copper foil for electrochemical applications. Diamond and Related Materials, 2014, 49, 55-61.	1.8	19
30	Study of CNTs structural evolution during water assisted growth and transfer methodology for electrochemical applications. Materials Chemistry and Physics, 2014, 148, 914-922.	2.0	16
31	Hydrophilic–oleophobic coatings on cellulosic materials by plasma assisted polymerization in liquid phase and fluorosurfactant complexation. Cellulose, 2014, 21, 729-739.	2.4	16
32	Growth and functionalization of carbon nanotubes on quartz filter for environmental applications. Journal of Environmental Engineering & Ecological Science, 2014, 3, 2.	0.7	14
33	Nitrogen plasma functionalization of carbon nanotubes for supercapacitor applications. Journal of Materials Science, 2013, 48, 7620-7628.	1.7	79
34	Thermal-Induced Structural Evolution of Carbon-Encapsulated Iron Nanoparticles Generated by Two Different Methods. Journal of Physical Chemistry C, 2013, 117, 19167-19174.	1.5	17
35	Hot-Wire Chemical Vapor Deposition of Few-Layer Graphene on Copper Substrates. Japanese Journal of Applied Physics, 2013, 52, 01AK02.	0.8	2
36	Surface Functionalization of Macroporous Polymeric Materials by Treatment with Air Low Temperature Plasma. Journal of Nanoscience and Nanotechnology, 2013, 13, 2819-2825.	0.9	8

#	Article	IF	Citations
37	Photonic Characteristics of Langmuir-Blodgett Self-Assembled Monolayers of Colloidal Silica Particles. Nanoscience and Nanotechnology Letters, 2013, 5, 41-45.	0.4	4
38	In Situ Polymerization of Aqueous Solutions of NIPAAm Initiated by Atmospheric Plasma Treatment. Plasma Processes and Polymers, 2013, 10, 506-516.	1.6	24
39	Water Plasma Functionalized CNTs/MnO ₂ Composites for Supercapacitors. Scientific World Journal, The, 2013, 2013, 1-8.	0.8	15
40	Anisotropic surface properties of micro/nanostructured a-C:H:F thin films with self-assembly applications. Journal of Applied Physics, 2012, 111, .	1.1	9
41	Vertically Aligned Carbon Nanotubes for Microelectrode Arrays Applications. Journal of Nanoscience and Nanotechnology, 2012, 12, 6941-6947.	0.9	5
42	Self-assembled layers of colloidal crystals submicron spheres for photonic applications. , 2012, , .		1
43	Functionalization of carbon nanotubes by water plasma. Nanotechnology, 2012, 23, 385604.	1.3	45
44	Structure and physical properties of colloidal crystals made of silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 401, 38-47.	2.3	18
45	lon energy distributions in bipolar pulsed-dc discharges of methane measured at the biased cathode. Plasma Sources Science and Technology, 2011, 20, 015006.	1.3	11
46	Modifying surface properties of diamond-like carbon films via nanotexturing. Journal Physics D: Applied Physics, 2011, 44, 395301.	1.3	22
47	Optimization of MnO2/vertically aligned carbon nanotube composite for supercapacitor application. Journal of Power Sources, 2011, 196, 5779-5783.	4.0	137
48	Detection and characterization of single nanoparticles by interferometric phase modulated ellipsometry. Thin Solid Films, 2011, 519, 2801-2805.	0.8	2
49	Nanoparticles in SiH4-Ar plasma: Modelling and comparison with experimental data. Journal of Applied Physics, 2011, 110, .	1.1	7
50	Magnetic behaviour of non-contacting Ni nanoparticles encapsulated in vertically aligned carbon nanotubes. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2679-2682.	0.8	25
51	Morphological and Magnetic Properties of Superparamagnetic Carbon-Coated Fe Nanoparticles Produced by Arc Discharge. Journal of Nanoscience and Nanotechnology, 2010, 10, 2646-2649.	0.9	7
52	Surface structuring of diamond-like carbon films by colloidal lithography with silica sub-micron particles. Diamond and Related Materials, 2010, 19, 1124-1130.	1.8	10
53	Optimal deposition conditions of TiN barrier layers for the growth of vertically aligned carbon nanotubes onto metallic substrates. Journal Physics D: Applied Physics, 2009, 42, 104002.	1.3	14
54	Growth kinetics of nanometric dendrites in metal–carbon thin films. Acta Materialia, 2009, 57, 4948-4956.	3.8	10

#	Article	IF	CITATIONS
55	Influence of incident ion beam angle on dry etching of silica sub-micron particles deposited on Si substrates. Thin Solid Films, 2009, 518, 1543-1548.	0.8	12
56	Magnetic domain wall pinning by focused ion beam milling of permalloy layers. Microelectronic Engineering, 2009, 86, 878-881.	1.1	3
57	Efficient diffusion barrier layers for the catalytic growth of carbon nanotubes on copper substrates. Carbon, 2009, 47, 613-621.	5.4	67
58	Analytic model of nanoparticle formation and growth in a SiH4-Ar plasma. Technical Physics, 2009, 54, 674-681.	0.2	1
59	Plasma parameters of pulsed-dc discharges in methane used to deposit diamondlike carbon films. Journal of Applied Physics, 2009, 106, 033302.	1.1	25
60	Magnetic response of CVD and PECVD iron filled multi-walled carbon nanotubes. Diamond and Related Materials, 2009, 18, 953-956.	1.8	12
61	Low friction and protective diamond-like carbon coatings deposited by asymmetric bipolar pulsed plasma. Diamond and Related Materials, 2009, 18, 1035-1038.	1.8	11
62	Effects of environmental conditions on fluorinated diamond-like carbon tribology. Diamond and Related Materials, 2009, 18, 923-926.	1.8	28
63	Effects of low temperature plasma on wool and wool/nylon blend dyed fabrics. Fibers and Polymers, 2008, 9, 293-300.	1.1	19
64	Study on the influence of scouring on the wettability of keratin fibers before plasma treatment. Fibers and Polymers, 2008, 9, 444-449.	1.1	17
65	Vertically aligned carbon nanotube based electrodes: Fabrication, characterisation and prospects. Electrochemistry Communications, 2008, 10, 1242-1245.	2.3	21
66	Structural and optical properties of diamond like thin films deposited by asymmetric bipolar pulsed-DC reactive magnetron sputtering. Surface and Coatings Technology, 2008, 202, 2354-2357.	2.2	13
67	Optical characterization of colloidal crystals based on dissymmetric metal-coated oxide submicrospheres. Thin Solid Films, 2008, 517, 1053-1057.	0.8	8
68	A self-consistent model for the production and growth of nanoparticles in low-temperature plasmas. Russian Journal of Physical Chemistry B, 2008, 2, 315-328.	0.2	1
69	Fluorinated DLC deposited by pulsed-DC plasma for antisticking surface applications. Diamond and Related Materials, 2008, 17, 1728-1732.	1.8	22
70	Structural effects of nanocomposite films of amorphous carbon and metal deposited by pulsed-DC reactive magnetron sputtering. Diamond and Related Materials, 2007, 16, 1828-1834.	1.8	72
71	The crystallization temperature of silicon nanoparticles. Nanotechnology, 2007, 18, 175705.	1.3	15
72	Carbon nanotubes grown by asymmetric bipolar pulsed-DC PECVD. Diamond and Related Materials, 2007, 16, 1131-1135.	1.8	26

#	Article	IF	CITATIONS
73	Diamond like carbon films deposited from graphite target by asymmetric bipolar pulsed-DC magnetron sputtering. Diamond and Related Materials, 2007, 16, 1286-1290.	1.8	28
74	Polysiloxane Softener Coatings on Plasma-Treated Wool: Study of the Surface Interactions. Macromolecular Materials and Engineering, 2007, 292, 817-824.	1.7	18
75	In-situ monitoring of laser annealing by micro-Raman spectroscopy for hydrogenated silicon nanoparticles produced in radio frequency glow discharge. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1296-1300.	0.8	4
76	Kinetic study of the oxide-assisted catalyst-free synthesis of silicon nitride nanowires. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1307-1312.	0.8	13
77	Calorimetry of dehydrogenation and dangling-bond recombination in several hydrogenated amorphous silicon materials. Physical Review B, 2006, 73, .	1.1	21
78	Composition and morphology of metal-containing diamond-like carbon films obtained by reactive magnetron sputtering. Thin Solid Films, 2005, 482, 293-298.	0.8	27
79	Kinetic model for generation and growth of plasma dust nanoparticles. Chemical Physics Letters, 2005, 414, 423-428.	1.2	9
80	Kinetic model of thin film growth by vapor deposition. European Physical Journal D, 2005, 35, 505-511.	0.6	7
81	Time-resolved electrical measurements of a pulsed-dc methane discharge used in diamond-like carbon films production. Thin Solid Films, 2005, 482, 172-176.	0.8	24
82	Kinetic Model for Production and Growth of Dust Nanoparticles in Low Pressure Plasmas of RF Discharges. AIP Conference Proceedings, 2005, , .	0.3	1
83	Anomalous crystallization of hydrogenated amorphous silicon during fast heating ramps. Journal of Materials Research, 2005, 20, 277-281.	1.2	3
84	Influence of the dipolar interactions in the magnetization reversal asymmetry of hard–soft magnetic ribbons. Journal of Applied Physics, 2005, 97, 023903.	1.1	13
85	Spontaneous formation of nanometric multilayers of metal-carbon films by up-hill diffusion during growth. Applied Physics Letters, 2005, 87, 213117.	1.5	28
86	Si3N4 single-crystal nanowires grown from silicon micro- and nanoparticles near the threshold of passive oxidation. Applied Physics Letters, 2005, 87, 192114.	1.5	36
87	Thermally Induced Structural Transformations on Polymorphous Silicon. Journal of Materials Research, 2005, 20, 2562-2567.	1.2	5
88	Characterization of diamond-like carbon thin films produced by pulsed-DC low pressure plasma monitored by a Langmuir probe in time-resolved mode. Diamond and Related Materials, 2005, 14, 1062-1066.	1.8	16
89	Characteristics of Carbon and Carbonâ€Nitride Nanostructures Produced by Plasma Deposition from Ammonia and Methane or Acetylene. Fullerenes Nanotubes and Carbon Nanostructures, 2005, 13, 447-455.	1.0	5
90	Structure of diamond-like carbon films containing transition metals deposited by reactive magnetron sputtering. Diamond and Related Materials, 2005, 14, 1103-1107.	1.8	63

#	Article	IF	Citations
91	Physical Properties of Sputtered ITO and WO ₃ Thin Films. Materials Science Forum, 2004, 455-456, 7-11.	0.3	2
92	Influence of the film structure on the properties of electrochromic CeO2 thin films deposited by e-beam PVD. Thin Solid Films, 2004, 447-448, 119-124.	0.8	11
93	FTIR phase-modulated ellipsometry characterization of hydrogenated amorphous silicon nitride thin films with embedded nanoparticles. Thin Solid Films, 2004, 455-456, 167-171.	0.8	3
94	Visible and infrared ellipsometry applied to the study of metal-containing diamond-like carbon coatings. Thin Solid Films, 2004, 455-456, 370-375.	0.8	7
95	Preparation of metal (W, Mo, Nb, Ti) containing a-C:H films by reactive magnetron sputtering. Surface and Coatings Technology, 2004, 177-178, 409-414.	2.2	67
96	Wettability, ageing and recovery process of plasma-treated polyamide 6. Journal of Adhesion Science and Technology, 2004, 18, 1077-1089.	1.4	107
97	Characterization of DLC films obtained at room temperature by pulsed-dc PECVD. Diamond and Related Materials, 2004, 13, 1494-1499.	1.8	50
98	Study of the oxidization of ns-SiNx:H thin films using FTIR phase modulated ellipsometry. , 2004, , .		1
99	Degradation of a solid state electrochromic device. Solid State Ionics, 2003, 165, 73-80.	1.3	9
100	Influence of the porosity of RF sputtered Ta2O5 thin films on their optical properties for electrochromic applications. Solid State Ionics, 2003, 165, 15-22.	1.3	61
101	RF sputtering deposition of Ag/ITO coatings at room temperature. Solid State Ionics, 2003, 165, 139-148.	1.3	69
102	Electrochromic coatings for smart windows. Surface Science, 2003, 532-535, 1127-1131.	0.8	32
103	Surface characterization of keratin fibres treated by water vapour plasma. Surface and Interface Analysis, 2003, 35, 128-135.	0.8	74
104	Comparative study of metal/amorphous-carbon multilayer structures produced by magnetron sputtering. Diamond and Related Materials, 2003, 12, 1008-1012.	1.8	21
105	Growth of hydrogenated amorphous carbon films in pulsed d.c. methane discharges. Diamond and Related Materials, 2003, 12, 98-104.	1.8	49
106	Si-N nanowire formation from Silicon nano and microparticles Materials Research Society Symposia Proceedings, 2003, 789, 18.	0.1	1
107	Free Radical Formation in Wool Fibers Treated by Low Temperature Plasma. Textile Reseach Journal, 2003, 73, 955-959.	1.1	18
108	Electrochromic tungsten oxide multilayer thin films for use in smart windows. , 2003, 4829, 817.		1

#	Article	IF	CITATIONS
109	Atomic structure of the nanocrystalline Si particles appearing in nanostructured Si thin films produced in low-temperature radiofrequency plasmas. Journal of Applied Physics, 2002, 92, 4684-4694.	1.1	74
110	Calorimetry of hydrogen desorption froma-Si nanoparticles. Physical Review B, 2002, 65, .	1.1	15
111	Effects of gas pressure and r.f. power on the growth and properties of magnetron sputter deposited amorphous carbon thin films. Diamond and Related Materials, 2002, 11, 1005-1009.	1.8	37
112	Shrink-resistance and wetting properties of keratin fibres treated by glow discharge. Journal of Adhesion Science and Technology, 2002, 16, 1469-1485.	1.4	54
113	Properties of W/a-C nanometric multilayers produced by RF-pulsed magnetron sputtering. Diamond and Related Materials, 2002, 11 , $1000-1004$.	1.8	7
114	Hard coatings for mechanical applications. Vacuum, 2002, 64, 181-190.	1.6	16
115	Mechanical properties of nanometric structures of Si/SiC, C/SiC and C/SiN produced by PECVD. Diamond and Related Materials, 2001, 10, 1115-1120.	1.8	16
116	Carbon nitride thin-films deposited from coupled r.fmagnetron sputtering and ion beam-assisted processes. Diamond and Related Materials, 2001, 10, 1175-1178.	1.8	9
117	Electrochromic behaviour of nickel oxide thin films deposited by thermal evaporation. Thin Solid Films, 2001, 398-399, 41-44.	0.8	63
118	Application of FTIR phase-modulated ellipsometry to the characterisation of thin films on surface-enhanced IR absorption active substrates. Thin Solid Films, 2001, 398-399, 99-103.	0.8	5
119	Thermal oxidation of polymer-like amorphous SixCyHwOz nanoparticles. Diamond and Related Materials, 2001, 10, 1295-1299.	1.8	5
120	Microstructural and mechanical properties of nanometric-multilayered a-CN/a-C/ \hat{a} e\ /a-CN coatings deposited by rf-magnetron sputtering and nitrogen ion-beam bombardment. Diamond and Related Materials, 2001, 10, 952-955.	1.8	4
121	Polymorphous Si thin films from radio frequency plasmas of SiH4 diluted in Ar: A study by transmission electron microscopy and Raman spectroscopy. Journal of Applied Physics, 2001, 90, 4272-4280.	1.1	17
122	Enhancement of oxidation rate of a-Si nanoparticles during dehydrogenation. Applied Physics Letters, 2001, 79, 3705-3707.	1.5	17
123	Thermal Stabilization and Crystallization of Nanometric Particles of Si-C-N Produced by RF-Plasma Enhanced Chemical-Vapor-Deposition. Materials Research Society Symposia Proceedings, 2000, 609, 2451.	0.1	1
124	Thermal Oxidation of Si Nanoparticles Grown by Plasma-Enhanced CVD. Materials Research Society Symposia Proceedings, 2000, 609, 5111.	0.1	0
125	Surface analysis of nanostructured ceramic coatings containing silicon carbide nanoparticles produced by plasma modulation chemical vapour deposition. Thin Solid Films, 2000, 377-378, 495-500.	0.8	13
126	Optical properties of Li+ doped electrochromic WO3 thin films. Thin Solid Films, 2000, 377-378, 8-13.	0.8	28

#	Article	IF	Citations
127	Efficiency of Li doping on electrochromic WO3 thin films. Thin Solid Films, 2000, 377-378, 129-133.	0.8	31
128	Step-by-step simulations of diamond nucleation and growth on a silicon (001) surface. Diamond and Related Materials, 2000, 9, 146-155.	1.8	1
129	Optimized calibration method for Fourier transform infrared phase-modulated ellipsometry. Thin Solid Films, 1999, 354, 187-194.	0.8	10
130	Nanometric powder of stoichiometric silicon carbide produced in square-wave modulated RF glow discharges. Vacuum, 1999, 52, 183-186.	1.6	14
131	Synthesis of nanosize Si–C–N powder in low pressure plasmas. Vacuum, 1999, 52, 153-156.	1.6	5
132	Accurate electrical measurements for in situ diagnosis of RF discharges in plasma CVD processes. Vacuum, 1999, 53, 1-5.	1.6	13
133	Nanoparticles of Si–C–N from low temperature RF plasmas: selective size, composition and structure. Applied Surface Science, 1999, 144-145, 702-707.	3.1	12
134	Deep profiles of lithium in electrolytic structures of ITO/WO3 for electrochromic applications. Thin Solid Films, 1999, 343-344, 179-182.	0.8	15
135	Optical and electrical characterisation of Ta2O5 thin films for ionic conduction applications. Thin Solid Films, 1999, 343-344, 449-452.	0.8	25
136	Study of the Optical and Structural Properties of Silicon–Carbon Nanometric Powder Using Infrared Phase Modulated Ellipsometry and Electron Microscopy. Physica Status Solidi A, 1999, 175, 373-381.	1.7	2
137	High nucleation rate in pure SiC nanometric powder by a combination of room temperature plasmas and post-thermal treatments. Diamond and Related Materials, 1999, 8, 364-368.	1.8	6
138	Blackbody emission under laser excitation of silicon nanopowder produced by plasma-enhanced chemical-vapor deposition. Journal of Applied Physics, 1998, 83, 7879-7885.	1.1	45
139	Effect of the Nanoparticles on the Structure and Crystallization of Amorphous Silicon Thin Films Produced by rf Glow Discharge. Journal of Materials Research, 1998, 13, 2476-2479.	1.2	30
140	Black-body emission from nanostructured materials. Journal of Luminescence, 1998, 80, 519-522.	1.5	21
141	Spectroscopic ellipsometric characterization of transparent thin film amorphous electronic materials: integrated analysis. Thin Solid Films, 1998, 313-314, 379-383.	0.8	15
142	Application of infrared Fourier transform phase-modulated ellipsometry to the characterization of silicon-based amorphous thin films. Thin Solid Films, 1998, 313-314, 671-675.	0.8	2
143	Infrared and UV-visible ellipsometric study of WO3 electrochromic thin films. Thin Solid Films, 1998, 313-314, 682-686.	0.8	13
144	Optical emission spectroscopy of rf glow discharges of methane–silane mixtures. Thin Solid Films, 1998, 317, 120-123.	0.8	11

#	Article	IF	CITATIONS
145	Molecular mechanics simulation of the diamond nucleation and growth on silicon (001) and (111) surfaces. Thin Solid Films, 1998, 317, 6-9.	0.8	10
146	Nanopowder of silicon nitride produced in radio frequency modulated glow discharges from SiH4 and NH3. Surface and Coatings Technology, 1998, 100-101, 55-58.	2.2	12
147	Nanoparticle formation in low-pressure silane plasmas: bridging the gap between a-Si:H and \hat{l}^{1} 4c-Si films. Journal of Non-Crystalline Solids, 1998, 227-230, 871-875.	1.5	84
148	Siî—,Cî—,N nanometric powder produced in square-wave modulated RF glow discharges. Diamond and Related Materials, 1998, 7, 407-411.	1.8	12
149	Size dependence of energy gaps in small carbon clusters: the origin of broadband luminescence. Diamond and Related Materials, 1998, 7, 1663-1668.	1.8	69
150	Plasma-enhanced chemical vapor deposition of boron nitride thin films from B2H6–H2–NH3 and B2H6–N2 gas mixtures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 578-586.	0.9	28
151	Deposition of Nanostructured Silicon Thin Films by Means of the Selective Contribution of Particles in Pecvd. Materials Research Society Symposia Proceedings, 1998, 507, 499.	0.1	16
152	Structural Characterization and Crystallization Process of Nanostructured Silicon Thin Films Produced in Low-Pressure Silane Plasma. Materials Research Society Symposia Proceedings, 1998, 507, 933.	0.1	10
153	Thermal Desorption of Hydrogen in Si and Sic Nanoparticles Produced by Plasma-Enhanced Chemical-Vapor Deposition. Materials Research Society Symposia Proceedings, 1998, 513, 427.	0.1	3
154	In situ fast ellipsometric analysis of repetitive surface phenomena. Review of Scientific Instruments, 1997, 68, 3135-3139.	0.6	4
155	Gas collisions and pressure quenching of the photoluminescence of silicon nanopowder grown by plasma-enhanced chemical vapor deposition. Journal of Applied Physics, 1997, 81, 3290-3293.	1.1	3
156	Calorimetric Study of the Thermal Induced Transformations of Ultrafine Silicon Carbide Powder Produced by RF Glow Discharge. Key Engineering Materials, 1997, 132-136, 145-148.	0.4	1
157	Nanostructured Silicon thin films Deposited by PECVD in the Presence of Silicon Nanoparticles. Materials Research Society Symposia Proceedings, 1997, 467, 313.	0.1	12
158	Modeling interface structures of cubic boron nitride films deposited heteroepitaxially and via a hexagonal boron nitride interlayer on silicon (001) surfaces. Diamond and Related Materials, 1997, 6, 589-593.	1.8	3
159	Effects of thermal and laser annealing on silicon carbide nanopowder produced in radio frequency glow discharge. Diamond and Related Materials, 1997, 6, 1559-1563.	1.8	8
160	Silicon carbide nanoparticles for advanced materials produced in radio frequency modulated glow discharges. Vacuum, 1997, 48, 665-668.	1.6	8
161	Growth of boron nitride thin films by tuned substrate RF magnetron sputtering. Diamond and Related Materials, 1996, 5, 535-538.	1.8	4
162	Spectroscopic ellipsometric study of boron nitride thin films. Diamond and Related Materials, 1996, 5, 539-543.	1.8	10

#	Article	IF	Citations
163	Production of boron nitride nanometric powder by plasma-enhanced chemical vapor deposition: microstructural characterization. Diamond and Related Materials, 1996, 5, 544-547.	1.8	8
164	Calibration improvement of Fourier transform infrared phase-modulated ellipsometry. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1996, 13, 2461.	0.8	5
165	Particle agglomeration study in rf silane plasmas:Insitustudy by polarizationâ€sensitive laser light scattering. Journal of Applied Physics, 1996, 80, 2069-2078.	1.1	92
166	Microstructure of highly oriented, hexagonal, boron nitride thin films grown on crystalline silicon by radio frequency plasmaâ€essisted chemical vapor deposition. Journal of Applied Physics, 1996, 80, 6553-6555.	1.1	14
167	On the structural origin of the photoluminescence in silicon powder produced in PECVD processes. Thin Solid Films, 1996, 276, 96-99.	0.8	5
168	Production of nanometric particles in radio frequency glow discharges in mixtures of silane and methane. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 567-571.	0.9	17
169	Role of structural saturation and geometry in the luminescence of silicon-based nanostructured materials. Physical Review B, 1996, 53, 7847-7850.	1.1	40
170	Structural modeling of the possible growth of oriented textured singleâ€crystal diamond film on a silicon (111) surface. Applied Physics Letters, 1996, 69, 1086-1088.	1.5	15
171	Optical and Electrical Real-Time Characterization of the Color-Switching Process in Thin Film Electrochromic Devices. Materials Research Society Symposia Proceedings, 1995, 403, 527.	0.1	2
172	Produiion of a-Si1-x Cx:H powders using radiofrequency glow discharges of silane and methane mixtures Materials Research Society Symposia Proceedings, 1995, 410, 173.	0.1	3
173	Real Time Ellipsometric Study of Boron Nitride Thin Film Growth. Materials Research Society Symposia Proceedings, 1995, 410, 307.	0.1	1
174	Pressure dependence of photoluminescence in amorphous silicon nanopowder produced by plasma enhanced chemical vapour deposition. Materials Science and Technology, 1995, 11, 707-710.	0.8	4
175	Pressure influence on the decay of the photoluminescence in Si nanopowder grown by plasmaâ€enhanced chemical vapor deposition. Applied Physics Letters, 1995, 67, 2830-2832.	1.5	6
176	Optical and structural characterization of boron nitride thin films. Diamond and Related Materials, 1995, 4, 657-660.	1.8	11
177	Optical and structural characterization of hydrogenated amorphous silicon carbide thin films prepared by r.f. plasma chemical vapour deposition. Diamond and Related Materials, 1995, 4, 1205-1209.	1.8	13
178	Spectral ellipsometric and compositional characterization of hydrogenated amorphous silicon carbide thin films. Diamond and Related Materials, 1995, 4, 702-705.	1.8	10
179	Effects of plasma processing on the microstructural properties of silicon powders. Plasma Sources Science and Technology, 1994, 3, 348-354.	1.3	33
180	Photoluminescence in silicon powder grown by plasma-enhanced chemical-vapor deposition: Evidence of a multistep-multiphoton excitation process. Physical Review B, 1994, 50, 18124-18133.	1.1	15

#	Article	IF	CITATIONS
181	Preparation of nanoscale amorphous silicon based powder in a square-wave-modulated rf plasma reactor. Vacuum, 1994, 45, 1115-1117.	1.6	14
182	Unusual photoluminescence properties in amorphous silicon nanopowder produced by plasma enhanced chemical vapor deposition. Applied Physics Letters, 1994, 64, 463-465.	1.5	27
183	IR-Visible Photoluminescence Study of Nanometer-Size Amorphous Silicon Powder Produced by Square-Wave-Modulated RF Glow Discharge. Materials Research Society Symposia Proceedings, 1994, 351, 405.	0.1	1
184	Optical, vibrational and compositional study of amorphous silicon oxynitride thin films grown by an RF plasma using N2O + SiH4 gas mixtures. Applied Surface Science, 1993, 70-71, 695-700.	3.1	9
185	Effect of hydrogen dilution on the growth of hydrogenated amorphous silicon studied by in-situ phase-modulated ellipsometry. Thin Solid Films, 1993, 228, 109-112.	0.8	8
186	In situ real-time ellipsometric study of the growth of r.f. plasma deposited amorphous hydrogenated silicon oxynitride thin films. Thin Solid Films, 1993, 228, 137-140.	0.8	3
187	Effects of r.f. power on optical and electrical properties of plasma-deposited hydrogenated amorphous silicon thin films. Sensors and Actuators A: Physical, 1993, 37-38, 733-736.	2.0	2
188	Plasma-deposited silicon nitride films with low hydrogen content for amorphous silicon thin-film transistors application. Sensors and Actuators A: Physical, 1993, 37-38, 333-336.	2.0	10
189	Study of thin films of transparent electronic materials by phase-modulated spectroellipsometry. Thin Solid Films, 1993, 233, 223-226.	0.8	1
190	Error minimization method for spectroscopic and phase-modulated ellipsometric measurements on highly transparent thin films. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1993, 10, 713.	0.8	11
191	Spectroscopic ellipsometry measurements of the diamond-crystalline Si interface in chemically vapour-deposited polycrystalline diamond films. Diamond and Related Materials, 1993, 2, 728-731.	1.8	7
192	Microstructural and Vibrational Characterization of the Hydrogenated Amorphous Silicon Powders. Materials Research Society Symposia Proceedings, 1993, 297, 1031.	0.1	6
193	Properties of amorphous silicon thin films grown in square wave modulated silane rf discharges. Journal of Applied Physics, 1992, 71, 1546-1548.	1.1	15
194	Amorphous Silicon Thin Film Transistors With High Electron Field Effect Mobility. Materials Research Society Symposia Proceedings, 1992, 258, 1007.	0.1	0
195	Comparative Study of the Optical and Vibrational Properties of a-SiNx:H Films Prepared from SiH4-N2 and SiH4-NH3 Gas Mixtures by rf Plasma. Materials Research Society Symposia Proceedings, 1992, 258, 643.	0.1	0
196	Percolation Behaviour in the Electrical Characteristics of Hydrogenated Amorphous Silicon Nitride Films Materials Research Society Symposia Proceedings, 1992, 258, 655.	0.1	3
197	Composition Analysis of RF Plasma-Deposited Amorphous Silicon Oxynitride Thin Films by Spectroscopic Phase-Modulated Ellipsometry. Materials Research Society Symposia Proceedings, 1992, 284, 351.	0.1	1
198	Production of Silicon Powder by Square-Wave Modulated Rf Silane Plasma. Materials Research Society Symposia Proceedings, 1992, 286, 155.	0.1	5

#	Article	IF	CITATIONS
199	Effect of methane/hydrogen dilution on the properties of hydrogenated amorphous carbon films deposited by RF-plasma. Diamond and Related Materials, 1992, 1, 538-542.	1.8	5
200	Ellipsometric characterization of surface oxidation in polycrystalline Zn3P2 thin films. Thin Solid Films, 1992, 214, 74-77.	0.8	9
201	Optical and electrical properties of a-SixNy:H films prepared by rf plasma using N2+SiH4 gas mixtures. Journal of Non-Crystalline Solids, 1991, 137-138, 895-898.	1.5	7
202	Surface roughness evolution in the growth of a-Si: H thin films studied by ellipsometry. Surface Science, 1991, 251-252, 191-194.	0.8	3
203	Surface reflectivity of TiN thin films measured by spectral ellipsometry. Surface Science, 1991, 251-252, 200-203.	0.8	18
204	Ellipsometric study ofa‧i:H thin films deposited by square wave modulated rf glow discharge. Journal of Applied Physics, 1991, 69, 632-638.	1.1	39
205	Effects of deposition temperature on properties of r.f. glow discharge amorphous silicon thin films. Thin Solid Films, 1991, 205, 140-145.	0.8	7
206	Ellipsometric study of diamond-like thin films. Surface and Coatings Technology, 1991, 47, 263-268.	2.2	28
207	Nucleation of diamond on silicon, SiAlON, and graphite substrates coated with an a :H layer. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1991, 9, 3012-3018.	0.9	65
208	Influence of pressure and radio frequency power on deposition rate and structural properties of hydrogenated amorphous silicon thin films prepared by plasma deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1991, 9, 2216-2221.	0.9	52
209	Optical absorption from graphitic clusters of hydrogenated amorphous carbon thin films. Journal of Applied Physics, 1991, 70, 5119-5121.	1.1	20
210	Effect of substrate temperature on deposition rate of rf plasmaâ€deposited hydrogenated amorphous silicon thin films. Journal of Applied Physics, 1991, 69, 3757-3759.	1.1	13
211	Insituspectroellipsometric study of the nucleation and growth of amorphous silicon. Journal of Applied Physics, 1990, 68, 2752-2759.	1.1	68
212	In situ optical characterizations for rf plasma deposited a-Si: H thin films. Vacuum, 1989, 39, 785-787.	1.6	30
213	Real time controlled rf reactor for deposition of a-Si:H thin films. Vacuum, 1989, 39, 795-798.	1.6	34
214	Optical properties of indium doped CdS thin films. Solar Energy Materials and Solar Cells, 1988, 17, 55-64.	0.4	32
215	Rheotaxial growth of CulnSe2 thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 169-173.	0.9	3
216	Title is missing!. Journal Physics D: Applied Physics, 1987, 20, 958-962.	1.3	10

#	Article	IF	CITATIONS
217	Crystalline properties of In-Doped CdS thin films. Journal of Crystal Growth, 1987, 84, 483-488.	0.7	2
218	Optical properties of co-evaporated CulnSe2thin films. Journal Physics D: Applied Physics, 1986, 19, 127-136.	1.3	37
219	Spectroscopic ellipsometry study of the In1â€xGaxAsyP1â€y/InP heterojunctions grown by metalorganic chemicalâ€vapor deposition. Journal of Applied Physics, 1986, 60, 3512-3518.	1.1	9
220	Indium thin films on metal-coated substrates. Thin Solid Films, 1985, 129, 103-109.	0.8	8
221	Crystalline properties of co-evaporated CuInSe2 thin films. Thin Solid Films, 1985, 130, 155-164.	0.8	22
222	Analysis of the capacitance of CdS/CuInSe2 thin film heterojunctions. Thin Solid Films, 1985, 125, 107-112.	0.8	0
223	Deposition of Zn3P2 thin films by coevaporation. Solar Energy Materials and Solar Cells, 1985, 12, 51-56.	0.4	23
224	Electrical properties of polycrystalline In-doped CdS thin films. Journal Physics D: Applied Physics, 1984, 17, 1679-1685.	1.3	21
225	Indium liquid films on glass substrates. Thin Solid Films, 1983, 103, L51-L54.	0.8	2
226	Growth Study and Characterization of Single-Layer Graphene Structures Deposited on Copper Substrate by Chemical Vapour Deposition., 0, , .		0
227	Tribological Properties of Fluorinated Amorphous Carbon Thin Films. , 0, , .		3
228	Wool Surface Modification And Its Influence On Related Functional Properties., 0,, 139-156.		0