
Gerald Willimsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7034212/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	T-cell Receptor Therapy Targeting Mutant Capicua Transcriptional Repressor in Experimental Gliomas. Clinical Cancer Research, 2022, 28, 378-389.	3.2	11
2	Isolation of Neoantigen-Specific Human T Cell Receptors from Different Human and Murine Repertoires. Cancers, 2022, 14, 1842.	1.7	2
3	EBAG9 controls CD8+ T cell memory formation responding to tumor challenge in mice. JCI Insight, 2022, , .	2.3	2
4	In vitro proteasome processing of neo-splicetopes does not predict their presentation in vivo. ELife, 2021, 10, .	2.8	10
5	Lymphocyte access to lymphoma is impaired by high endothelial venule regression. Cell Reports, 2021, 37, 109878.	2.9	9
6	Cooperation of genes in HPV16 <i>E6/E7</i> -dependent cervicovaginal carcinogenesis trackable by endoscopy and independent of exogenous estrogens or carcinogens. Carcinogenesis, 2020, 41, 1605-1615.	1.3	8
7	Development of a Human Cytomegalovirus (HCMV)-Based Therapeutic Cancer Vaccine Uncovers a Previously Unsuspected Viral Block of MHC Class I Antigen Presentation. Frontiers in Immunology, 2019, 10, 1776.	2.2	15
8	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	1.6	766
9	Identification and ranking of recurrent neo-epitopes in cancer. BMC Medical Genomics, 2019, 12, 171.	0.7	2
10	Intracellular expression of FLT3 in Purkinje cells: implications for adoptive T-cell therapies. Leukemia, 2019, 33, 1039-1043.	3.3	11
11	Targeting Merkel Cell Carcinoma by Engineered T Cells Specific to T-Antigens of Merkel Cell Polyomavirus. Clinical Cancer Research, 2018, 24, 3644-3655.	3.2	18
12	Clinical translation and regulatory aspects of CAR/TCR-based adoptive cell therapies—the German Cancer Consortium approach. Cancer Immunology, Immunotherapy, 2018, 67, 513-523.	2.0	11
13	CD96 expression determines the inflammatory potential of IL-9–producing Th9 cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2940-E2949.	3.3	36
14	ERAP1-Dependent Antigen Cross-Presentation Determines Efficacy of Adoptive T-cell Therapy in Mice. Cancer Research, 2018, 78, 3243-3254.	0.4	11
15	Oncogene-specific T cells fail to eradicate lymphoma-initiating B cells in mice. Blood, 2018, 132, 924-934.	0.6	1
16	Tumor-Infiltrating Merkel Cell Polyomavirus-Specific T Cells Are Diverse and Associated with Improved Patient Survival. Cancer Immunology Research, 2017, 5, 137-147.	1.6	73
17	Spatiotemporally restricted arenavirus replication induces immune surveillance and type I interferon-dependent tumour regression. Nature Communications, 2017, 8, 14447.	5.8	22
18	Chimeric PD-1:28 Receptor Upgrades Low-Avidity T cells and Restores Effector Function of Tumor-Infiltrating Lymphocytes for Adoptive Cell Therapy. Cancer Research, 2017, 77, 3577-3590.	0.4	32

GERALD WILLIMSKY

#	Article	IF	CITATIONS
19	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	1.6	505
20	Oleate but not stearate induces the regulatory phenotype of myeloid suppressor cells. Scientific Reports, 2017, 7, 7498.	1.6	35
21	Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature, 2015, 521, 94-98.	13.7	451
22	Fas expression by tumor stroma is required for cancer eradication. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2276-2281.	3.3	34
23	Differently immunogenic cancers in mice induce immature myeloid cells that suppress CTL in vitro but not in vivo following transfer. Blood, 2013, 121, 1740-1748.	0.6	25
24	Virus-induced hepatocellular carcinomas cause antigen-specific local tolerance. Journal of Clinical Investigation, 2013, 123, 1032-1043.	3.9	42
25	Adoptive T-cell therapy to treat liver cancer: Is the liver microenvironment key?. Oncotarget, 2013, 4, 1117-1118.	0.8	6
26	The Sorting Receptor Sortilin Exhibits a Dual Function in Exocytic Trafficking of Interferon-Î ³ and Granzyme A in T Cells. Immunity, 2012, 37, 854-866.	6.6	45
27	High Immune Response Rates and Decreased Frequencies of Regulatory T Cells in Metastatic Renal Cell Carcinoma Patients after Tumor Cell Vaccination. Molecular Medicine, 2012, 18, 1499-1508.	1.9	16
28	Allogeneic gene-modified tumor cells (RCC-26/IL-7/CD80) as a vaccine in patients with metastatic renal cell cancer: a clinical phase-I study. Gene Therapy, 2011, 18, 354-363.	2.3	18
29	Commensal microflora and interferonâ€Î³ promote steadyâ€state interleukinâ€7 production <i>in vivo</i> . European Journal of Immunology, 2010, 40, 2391-2400.	1.6	77
30	In Vivo Imaging of an Inducible Oncogenic Tumor Antigen Visualizes Tumor Progression and Predicts CTL Tolerance. Journal of Immunology, 2010, 184, 2930-2938.	0.4	12
31	The immune response to sporadic colorectal cancer in a novel mouse model. Oncogene, 2010, 29, 6591-6602.	2.6	23
32	Phase 1 Trial of Allogeneic Gene-Modified Tumor Cell Vaccine RCC-26/CD80/IL-2 in Patients with Metastatic Renal Cell Carcinoma. Human Gene Therapy, 2010, 21, 285-297.	1.4	19
33	SV40 large T antigenâ€ŧransformed human primary normal and cancerous mammary epithelial cells are phenotypically similar but can be distinguished in 3D culture with selection medium. International Journal of Cancer, 2008, 123, 1516-1525.	2.3	4
34	Immunogenicity of premalignant lesions is the primary cause of general cytotoxic T lymphocyte unresponsiveness. Journal of Experimental Medicine, 2008, 205, 1687-1700.	4.2	105
35	The adaptive immune response to sporadic cancer. Immunological Reviews, 2007, 220, 102-112.	2.8	54
36	TCR in Renal Cell Carcinoma: Models, Monitoring and Therapy. Journal of Immunotherapy, 2005, 28, 618.	1.2	0

GERALD WILLIMSKY

#	Article	IF	CITATIONS
37	Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature, 2005, 437, 141-146.	13.7	385
38	Tumor-induced antibodies resemble the response to tissue damage. International Journal of Cancer, 2005, 115, 456-462.	2.3	27
39	Cell-based vaccines for renal cell carcinoma: genetically-engineered tumor cells and monocyte-derived dendritic cells. World Journal of Urology, 2005, 23, 166-174.	1.2	30
40	Influence of CD80, Interleukin-2, and Interleukin-7 Expression in Human Renal Cell Carcinoma on the Expansion, Function, and Survival of Tumor-Specific CTLs. Clinical Cancer Research, 2005, 11, 1733-1742.	3.2	22
41	Adenoviral transduction of tumor cells induces apoptosis in co-cultured T lymphocytes. Gene Therapy, 2002, 9, 1438-1446.	2.3	7
42	Expression of B7.1 (CD80) in a renal cell carcinoma line allows expansion of tumor-associated cytotoxic T lymphocytes in the presence of an alloresponse. Gene Therapy, 2000, 7, 2007-2014.	2.3	43
43	RNA Levels of Human Retrovirus Receptors Pit1 and Pit2 Do Not Correlate with Infectibility by Three Retroviral Vector Pseudotypes. Human Gene Therapy, 1998, 9, 2619-2627.	1.4	63
44	Structure in solution of the major cold-shock protein from Bacillus subtilis. Nature, 1993, 364, 169-171.	13.7	222
45	Mapping of the Bacillus subtilis cspB gene and cloning of its homologs in thermophilic, mesophilic and psychrotrophic bacilli. Gene, 1993, 136, 277-280.	1.0	24
46	Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. Journal of Bacteriology, 1992, 174, 6326-6335.	1.0	234
47	Overproduction, crystallization, and preliminary X-ray diffraction studies of the major cold shock protein fromBacillus subtilis. CspB. Proteins: Structure, Function and Bioinformatics, 1992, 14, 120-124	1.5	45