Katarina Kluckova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7034135/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	B-cell Receptor Signaling Induced Metabolic Alterations in Chronic Lymphocytic Leukemia Can Be Partially Bypassed by TP53 Abnormalities. HemaSphere, 2022, 6, e722.	2.7	6
2	Loss of SDHB Promotes Dysregulated Iron Homeostasis, Oxidative Stress, and Sensitivity to Ascorbate. Cancer Research, 2021, 81, 3480-3494.	0.9	26
3	Succinate dehydrogenase deficiency in a chromaffin cell model retains metabolic fitness through the maintenance of mitochondrial NADH oxidoreductase function. FASEB Journal, 2020, 34, 303-315.	0.5	17
4	Sorafenib-Induced Apoptosis in Hepatocellular Carcinoma Is Reversed by SIRT1. International Journal of Molecular Sciences, 2019, 20, 4048.	4.1	58
5	Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells. Cell Metabolism, 2019, 29, 399-416.e10.	16.2	190
6	Metabolic implications of hypoxia and pseudohypoxia in pheochromocytoma and paraganglioma. Cell and Tissue Research, 2018, 372, 367-378.	2.9	46
7	Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. ELife, 2017, 6, .	6.0	205
8	Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation. Cell Death and Disease, 2015, 6, e1749-e1749.	6.3	47
9	Mitochondrial Genome Acquisition Restores Respiratory Function and Tumorigenic Potential of Cancer Cells without Mitochondrial DNA. Cell Metabolism, 2015, 21, 81-94.	16.2	582
10	Evaluation of Respiration of Mitochondria in Cancer Cells Exposed to Mitochondria-Targeted Agents. Methods in Molecular Biology, 2015, 1265, 181-194.	0.9	2
11	Mitochondrially Targeted Vitamin E Succinate Modulates Expression of Mitochondrial DNA Transcripts and Mitochondrial Biogenesis. Antioxidants and Redox Signaling, 2015, 22, 883-900.	5.4	39
12	MicroRNA-126 Suppresses Mesothelioma Malignancy by Targeting IRS1 and Interfering with the Mitochondrial Function. Antioxidants and Redox Signaling, 2014, 21, 2109-2125.	5.4	85
13	Mitochondrial Complex II in Cancer. , 2014, , 81-104.		0
14	Mitochondrial targeting overcomes ABCA1-dependent resistance of lung carcinoma to α-tocopheryl succinate. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 286-299.	4.9	32
15	Mitochondrial complex II, a novel target for anti-cancer agents. Biochimica Et Biophysica Acta - Bioenergetics, 2013, 1827, 552-564.	1.0	87
16	High Molecular Weight Forms of Mammalian Respiratory Chain Complex II. PLoS ONE, 2013, 8, e71869.	2.5	12
17	Mitochondrial targeting of α-tocopheryl succinate enhances its pro-apoptotic efficacy: A new paradigm for effective cancer therapy. Free Radical Biology and Medicine, 2011, 50, 1546-1555.	2.9	100
18	Mitochondrially Targeted α-Tocopheryl Succinate Is Antiangiogenic: Potential Benefit Against Tumor Angiogenesis but Caution Against Wound Healing. Antioxidants and Redox Signaling, 2011, 15, 2923-2935.	5.4	48

#	Article	IF	CITATIONS
19	Mitochondrial Targeting of Vitamin E Succinate Enhances Its Pro-apoptotic and Anti-cancer Activity via Mitochondrial Complex II. Journal of Biological Chemistry, 2011, 286, 3717-3728.	3.4	171