List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7034019/publications.pdf Version: 2024-02-01

REDNHADD DICK

#	Article	IF	CITATIONS
1	Insight into the drastically different triplet lifetimes of BODIPY obtained by optical/magnetic spectroscopy and theoretical computations. Chemical Science, 2021, 12, 2829-2840.	3.7	37
2	Recent development of heavy-atom-free triplet photosensitizers: molecular structure design, photophysics and application. Journal of Materials Chemistry C, 2021, 9, 11944-11973.	2.7	55
3	Photophysical properties of <i>N</i> -methyl and <i>N</i> -acetyl substituted alloxazines: a theoretical investigation. Physical Chemistry Chemical Physics, 2021, 23, 13734-13744.	1.3	4
4	Intersystem Crossing and Triplet-State Property of Anthryl- and Carbazole-[1,12]fused Perylenebisimide Derivatives with a Twisted π-Conjugation Framework. Journal of Physical Chemistry B, 2021, 125, 9317-9332.	1.2	11
5	Dimerization of LOV domains of Rhodobacter sphaeroides (RsLOV) studied with FRET and stopped-flow experiments. Photochemical and Photobiological Sciences, 2020, 19, 159-170.	1.6	4
6	Spin–Orbit Chargeâ€Transfer Intersystem Crossing (ISC) in Compact Electron Donor–Acceptor Dyads: ISC Mechanism and Application as Novel and Potent Photodynamic Therapy Reagents. Chemistry - A European Journal, 2020, 26, 1091-1102.	1.7	76
7	Longâ€Lived Triplet Excited State Accessed with Spin–Orbit Charge Transfer Intersystem Crossing in Red Lightâ€Absorbing Phenoxazine‣tyryl BODIPY Electron Donor/Acceptor Dyads. ChemPhysChem, 2020, 21, 1388-1401.	1.0	33
8	17. Transient absorption with a streak camera. , 2020, , 415-442.		0
9	Twisted Bodipy Derivative as a Heavy-Atom-Free Triplet Photosensitizer Showing Strong Absorption of Yellow Light, Intersystem Crossing, and a High-Energy Long-Lived Triplet State. Organic Letters, 2020, 22, 5535-5539.	2.4	68
10	Consecutive Photoinduced Electron Transfer (conPET): The Mechanism of the Photocatalyst Rhodamineâ€6G. Chemistry - A European Journal, 2020, 26, 7946-7954.	1.7	21
11	Efficient Photooxidation of Sulfides with Amidated Alloxazines as Heavy-atom-free Photosensitizers. ACS Omega, 2020, 5, 10586-10595.	1.6	29
12	Elucidation of the Intersystem Crossing Mechanism in a Helical BODIPY for Lowâ€Dose Photodynamic Therapy. Angewandte Chemie, 2020, 132, 16248-16255.	1.6	26
13	Elucidation of the Intersystem Crossing Mechanism in a Helical BODIPY for Lowâ€Đose Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 16114-16121.	7.2	126
14	MELEXIR: maximum entropy Legendre expanded image reconstruction. A fast and efficient method for the analysis of velocity map imaging or photoelectron imaging data. Physical Chemistry Chemical Physics, 2019, 21, 19499-19512.	1.3	16
15	Spin–Orbit Charge-Transfer Intersystem Crossing (SOCT-ISC) in Bodipy-Phenoxazine Dyads: Effect of Chromophore Orientation and Conformation Restriction on the Photophysical Properties. Journal of Physical Chemistry C, 2019, 123, 22793-22811.	1.5	95
16	Transient absorption with a streak camera. Physical Sciences Reviews, 2019, 4, .	0.8	2
17	Can Coumarins Break Kasha's Rule?. Journal of Physical Chemistry Letters, 2019, 10, 6468-6471.	2.1	17
18	Lighting the Flavin Decorated Ruthenium(II) Polyimine Complexes: A Theoretical Investigation. Inorganic Chemistry, 2019, 58, 8486-8493.	1.9	7

#	Article	IF	CITATIONS
19	Visible‣ightâ€Mediated Liberation and In Situ Conversion of Fluorophosgene. Chemistry - A European Journal, 2019, 25, 361-366.	1.7	26
20	Insights into the Efficient Intersystem Crossing of Bodipy-Anthracene Compact Dyads with Steady-State and Time-Resolved Optical/Magnetic Spectroscopies and Observation of the Delayed Fluorescence. Journal of Physical Chemistry C, 2019, 123, 265-274.	1.5	79
21	Different Quenching Effect of Intramolecular Rotation on the Singlet and Triplet Excited States of Bodipy. Journal of Physical Chemistry C, 2018, 122, 185-193.	1.5	71
22	Flavin Dibromide as an Efficient Sensitizer for Photooxidation of Sulfides. ACS Sustainable Chemistry and Engineering, 2018, 6, 15254-15263.	3.2	27
23	Synthesis and photophysical properties of ruthenium(<scp>ii</scp>) polyimine complexes decorated with flavin. Physical Chemistry Chemical Physics, 2018, 20, 17504-17516.	1.3	16
24	Switching from adduct formation to electron transfer in a light–oxygen–voltage domain containing the reactive cysteine. Physical Chemistry Chemical Physics, 2017, 19, 10808-10819.	1.3	26
25	Electron transfer pathways in a light, oxygen, voltage (LOV) protein devoid of the photoactive cysteine. Scientific Reports, 2017, 7, 13346.	1.6	45
26	Less stable tautomers form stronger hydrogen bonds: the case of water complexes. Physical Chemistry Chemical Physics, 2017, 19, 25086-25094.	1.3	7
27	Light upconverting soft particles: triplet–triplet annihilation in the phospholipid bilayer of self-assembled vesicles. RSC Advances, 2016, 6, 41947-41950.	1.7	14
28	Finding structural principles for strong hydrogen-bonds: Less stable tautomers form dimers with stronger hydrogen bonds ChemistrySelect, 2016, 1, 195-200.	0.7	2
29	DNAâ€Based Oligochromophores as Lightâ€Harvesting Systems. Chemistry - A European Journal, 2015, 21, 9349-9354.	1.7	21
30	Application of Visibleâ€ŧoâ€UV Photon Upconversion to Photoredox Catalysis: The Activation of Aryl Bromides. Chemistry - A European Journal, 2015, 21, 15496-15501.	1.7	127
31	A search for radical intermediates in the photocycle of LOV domains. Photochemical and Photobiological Sciences, 2015, 14, 288-299.	1.6	27
32	Dual-fluorescence pH probe for bio-labelling. Physical Chemistry Chemical Physics, 2015, 17, 30590-30597.	1.3	22
33	Exploring the multiscale signaling behavior of phototropin1 from Chlamydomonas reinhardtii using a full-residue space kinetic Monte Carlo molecular dynamics technique. Proteins: Structure, Function and Bioinformatics, 2014, 82, 2018-2040.	1.5	12
34	Inverting ion images without Abel inversion: maximum entropy reconstruction of velocity maps. Physical Chemistry Chemical Physics, 2014, 16, 570-580.	1.3	164
35	Kinetics of Interactions between LOV Domains from Chlamydomonas Reinhardtii. Biophysical Journal, 2014, 106, 463a.	0.2	0
36	Setup and performance of a streak camera apparatus for transient absorption measurements in the ns to ms range. Applied Physics B: Lasers and Optics, 2013, 111, 203-216.	1.1	31

#	Article	IF	CITATIONS
37	Regulatory mechanism of the lightâ€activable allosteric switch LOV–TAP for the control of DNA binding: A computer simulation study. Proteins: Structure, Function and Bioinformatics, 2013, 81, 394-405.	1.5	3
38	Electronic spectroscopy of lumiflavin in superfluid helium nanodroplets. Chemical Physics, 2013, 422, 195-203.	0.9	22
39	3 Photophysics of Photocatalysts. , 2013, , 19-44.		0
40	15 Transient Absorption. , 2013, , 295-318.		2
41	Photodissociation dynamics of tert-butylnitrite following excitation to the S1 and S2 states. A study by velocity-map ion-imaging and 3D-REMPI spectroscopy. Physical Chemistry Chemical Physics, 2012, 14, 7076.	1.3	12
42	Illuminating the early signaling pathway of a fungal lightâ€oxygenâ€voltage photoreceptor. Proteins: Structure, Function and Bioinformatics, 2012, 80, 471-481.	1.5	17
43	Signaling pathway of a photoactivable Rac1â€GTPase in the early stages. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1350-1362.	1.5	4
44	A novel computer simulation method for simulating the multiscale transduction dynamics of signal proteins. Journal of Chemical Physics, 2012, 136, 124112.	1.2	12
45	Signals of LOV1: a computer simulation study on the wildtype LOV1-domain of Chlamydomonas reinhardtii and its mutants. Journal of Molecular Modeling, 2012, 18, 1375-1388.	0.8	17
46	Unraveling the flavin-catalyzed photooxidation of benzylic alcohol with transient absorption spectroscopy from sub-pico- to microseconds. Physical Chemistry Chemical Physics, 2011, 13, 8869.	1.3	104
47	Effect of computational methodology on the conformational dynamics of the protein photosensor LOV1 from Chlamydomonas reinhardtii. Journal of Chemical Biology, 2011, 4, 167-184.	2.2	7
48	Circular Dichroism of a Finite Number of Identical Chromophores in a Helical Arrangement. ChemPhysChem, 2011, 12, 1578-1587.	1.0	10
49	Highâ€Resolution Electronic Spectroscopy of the BODIPY Chromophore in Supersonic Beam and Superfluid Helium Droplets. ChemPhysChem, 2011, 12, 1969-1980.	1.0	9
50	Design and photoinduced surface relief grating formation of photoresponsive azobenzene based molecular materials with ruthenium acetylides. Journal of Materials Chemistry, 2010, 20, 2858.	6.7	39
51	Line broadening in electronic spectra of anthracene derivatives inside superfluid helium nanodroplets. Journal of Chemical Physics, 2010, 133, 114505.	1.2	24
52	Photolysis of <i>tert</i> -Butylthionitrite via Excitation to the S ₁ and S ₂ States Studied by 3d-REMPI Spectroscopy. Journal of Physical Chemistry A, 2010, 114, 9948-9962.	1.1	6
53	Mechanism of signal transduction of the LOV2-Jα photosensor from Avena sativa. Nature Communications, 2010, 1, 122.	5.8	54
54	The photodissociation dynamics of N-nitrosopyrrolidine from the first and second excited singlet states studied by velocity map imaging. Physical Chemistry Chemical Physics, 2010, 12, 4644.	1.3	9

#	Article	IF	CITATIONS
55	Photoreaction of mutated LOV photoreceptor domains from Chlamydomonas reinhardtii with aliphatic mercaptans: implications for the mechanism of wild type LOV. Physical Chemistry Chemical Physics, 2010, 12, 6594.	1.3	29
56	Blueâ€Lightâ€Triggered Photorelease of Active Chemicals Captured by the Flavoprotein Dodecin. ChemBioChem, 2009, 10, 834-837.	1.3	16
57	Mode‣elective Promotion and Isotope Effects of Concerted Doubleâ€Hydrogen Tunneling in Porphycene Embedded in Superfluid Helium Nanodroplets. ChemPhysChem, 2009, 10, 761-765.	1.0	50
58	Microsecond Light-Induced Proton Transfer to Flavin in the Blue Light Sensor Plant Cryptochrome. Journal of the American Chemical Society, 2009, 131, 14274-14280.	6.6	85
59	Dynamic Polar Solvation Is Reported by Fluorescing 4-Aminophthalimide Faithfully Despite H-Bonding. Journal of Physical Chemistry A, 2009, 113, 44-55.	1.1	66
60	Gradient Projection Method for Constraint Optimization and Relaxed Energy Paths on Conical Intersection Spaces and Potential Energy Surfaces. Journal of Chemical Theory and Computation, 2009, 5, 116-125.	2.3	8
61	Photochemistry of 3-hydroxyflavone inside superfluid helium nanodroplets. Journal of Chemical Physics, 2009, 131, 194307.	1.2	17
62	Velocity resolved REMPI spectroscopy: a new approach to the study of photodissociation dynamics. Physical Chemistry Chemical Physics, 2009, 11, 7115.	1.3	16
63	Rapidly pulsed helium droplet source. Review of Scientific Instruments, 2009, 80, 043302.	0.6	74
64	LOV1 Protein From <i>Chlamydomonas Reinhardtii</i> is a Template For the Photoadduct Formation of FMN and Methylmercaptane ChemBioChem, 2008, 9, 861-864.	1.3	11
65	Blueâ€Light Induced Interaction of LOV Domains from <i>Chlamydomonas reinhardtii</i> . ChemBioChem, 2008, 9, 1931-1938.	1.3	16
66	Locating conical intersections relevant to photochemical reactions. Chemical Physics, 2008, 347, 65-77.	0.9	20
67	Redox Properties of LOV Domains: Chemical versus Photochemical Reduction, and Influence on the Photocycle. ChemBioChem, 2007, 8, 2256-2264.	1.3	25
68	Photo-reduction of flavin mononucleotide to semiquinone form in LOV domain mutants of blue-light receptor phot from Chlamydomonas reinhardtii. Journal of Photochemistry and Photobiology B: Biology, 2007, 87, 37-48.	1.7	22
69	Photo-induced reduction of flavin mononucleotide in aqueous solutions. Chemical Physics, 2007, 332, 55-65.	0.9	34
70	Fluorescence quenching of flavins by reductive agents. Chemical Physics, 2007, 336, 14-21.	0.9	23
71	Absorption and fluorescence spectroscopic characterization of cryptochrome 3 from Arabidopsis thaliana. Journal of Photochemistry and Photobiology B: Biology, 2006, 85, 1-16.	1.7	63
72	The photochemistry of the light-, oxygen-, and voltage-sensitive domains in the algal blue light receptor phot. Biopolymers, 2006, 82, 373-378.	1.2	31

#	Article	IF	CITATIONS
73	Absorption and emission spectroscopic characterisation of combined wildtype LOV1–LOV2 domain of phot from Chlamydomonas reinhardtii. Journal of Photochemistry and Photobiology B: Biology, 2005, 81, 55-65.	1.7	5
74	Charge-Transfer-Type Fluorescence of 4-(1H-Pyrrol-1-yl)benzonitrile (PBN) andN-Phenylpyrrole (PP) in Cryogenic Matrixes:Â Evidence for Direct Excitation of the CT Band. Journal of Physical Chemistry A, 2005, 109, 576-585.	1.1	13
75	Photophysics of Phenylpyrrole Derivatives and Their Acetonitrile Clusters in the Gas Phase and in Argon Matrixes:  Simulations of Structure and Reactivity. Journal of Physical Chemistry A, 2005, 109, 3830-3842.	1.1	6
76	The Phot LOV2 Domain and Its Interaction with LOV1. Biophysical Journal, 2005, 89, 402-412.	0.2	72
77	Alignment and velocity distribution of the NO fragments from the UV photodissociation of jet-cooled nitrosobenzene studied by LIF and Doppler profile measurements. Chemical Physics, 2003, 288, 43-50.	0.9	6
78	Irreversible Photoreduction of Flavin in a Mutated Phot-LOV1 Domainâ€. Biochemistry, 2003, 42, 9854-9862.	1.2	54
79	Phot-LOV1: Photocycle of a Blue-Light Receptor Domain from the Green Alga Chlamydomonas reinhardtii. Biophysical Journal, 2003, 84, 1192-1201.	0.2	227
80	Velocity-map ion-imaging of the NO fragment from the UV-photodissociation of nitrosobenzene. Physical Chemistry Chemical Physics, 2003, 5, 2799.	1.3	18
81	The UV-photodissociation of jet-cooled nitrosobenzene studied by fluorescence excitation spectroscopy of the NO fragment. Physical Chemistry Chemical Physics, 2001, 3, 2819-2830.	1.3	13
82	Fluorescence excitation and UV–UV double-resonance spectroscopy of the SO → S1(Lb) transition of 1,6-methano[10]annulene cooled in a supersonic jetDedicated to Professor F. Dörr on the occasion of his 80th birthday Physical Chemistry Chemical Physics, 2001, 3, 5373-5382.	1.3	10
83	1,6-Methano[10]annulene has a Delocalized Structure in S0 and S1: High-Resolution Spectroscopy in a Supersonic Jet This work was supported by the Fonds der Chemischen Industrie Angewandte Chemie - International Edition, 2001, 40, 4020.	7.2	5
84	Inhomogeneous broadening of the zero phonon line of phthalocyanine in superfluid helium droplets. Journal of Chemical Physics, 2001, 115, 10199.	1.2	48
85	Inhomogeneous line shape theory of electronic transitions for molecules embedded in superfluid helium droplets. Journal of Chemical Physics, 2001, 115, 10206.	1.2	36
86	Optimization of a one-dimensional time-of-flight mass spectrometer. Review of Scientific Instruments, 2000, 71, 4421.	0.6	4
87	Computer optimization for high-resolution time-of-flight mass spectrometer. Review of Scientific Instruments, 2000, 71, 4415.	0.6	20
88	Molecular Dynamics Simulations of Site Geometries of Anthracene in an Argon Matrixâ€. Journal of Physical Chemistry A, 2000, 104, 3786-3791.	1.1	15
89	Measurement and assignment of the vibrationally resolved UV absorption spectrum of syn-methyl nitrite isolated in an argon matrix at 12 K. Chemical Physics Letters, 1999, 299, 423-429.	1.2	12
90	The potential energy surfaces of the six lowest singlet states of HOCI: global optimization of parameters for an extended anti-Morse function and a diatomics-in-molecules (DIM) model. Physical Chemistry Chemical Physics, 1999, 1, 2667-2674.	1.3	3

#	Article	IF	CITATIONS
91	NO product yield excitation spectrum of the S0→ S2 transition of nitrosobenzene in a supersonic jet. Chemical Physics Letters, 1998, 289, 516-520.	1.2	8
92	Fritz Peter SchÄfer. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 84-85.	0.9	0
93	Visible and Near UV Absorption Spectrum of Nitrosobenzene Isolated in Solid Argon:Â Maximum Entropy Analysis, Homogeneous Line Width of S2, and Semiempirical Electronic Structure Calculations. The Journal of Physical Chemistry, 1996, 100, 11883-11892.	2.9	15
94	MD‣imulation of Site Geometries and Photoinduced Site Interconversion of Diphenylacetylene (Tolan) in an Argon Matrix. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1995, 99, 422-428.	0.9	6
95	Saturation of Depth and Polarization of Resonant and Satellite Spectral Holes Generated with Pulsed Laser Excitation. The Journal of Physical Chemistry, 1994, 98, 2899-2907.	2.9	3
96	Spectral hole burning on silicon phthalocyanines isolated in an argon matrix. Chemical Physics Letters, 1994, 225, 398-403.	1.2	6
97	Response functions and susceptibilities for multiresonant non-linear optical spectroscopy: perturbative computer algebra solution including feeding. Chemical Physics, 1993, 171, 59-78.	0.9	3
98	Does diphenylacetylene (tolan) fluoresce from its second excited singlet state? Semiempirical MO calculations and fluorescence quantum yield measurements. The Journal of Physical Chemistry, 1993, 97, 13457-13463.	2.9	97
99	Spectral hole-burning of tetracene and tetracene—argon complexes in a supersonic jet. Chemical Physics Letters, 1991, 187, 571-578.	1.2	22
100	AM1 and INDO/S calculations on electronic singlet and triplet states involved in excited-state intramolecular proton transfer of 3-hydroxyflavone. The Journal of Physical Chemistry, 1990, 94, 5752-5756.	2.9	90
101	On the barrier to excited-state intramolecular proton transfer (ESIPT): The controversial assignment of the spectra of 2,5-bis(2-benzoxazolyl)hydroquinone in solid argon. Chemical Physics Letters, 1989, 158, 37-44.	1.2	15
102	Fluorescence excitation of isolated, jet-cooled 3-hydroxyflavone: The rate of excited state intramolecular proton transfer from homogeneous linewidths. Chemical Physics, 1989, 136, 181-186.	0.9	55
103	Line-narrowing spectroscopy in amorphous solids through polarization detection of spectral holes. I. Principles. Chemical Physics, 1989, 136, 413-428.	0.9	7
104	Line-narrowing spectroscopy in amorphous solids through polarization detection of spectral holes. II. Application to tetraphenylporphin in pmma. Chemical Physics, 1989, 136, 429-442.	0.9	13
105	High-contrast polarization spectroscopy of photochemically burned spectral holes in amorphous solids: Potential for fast optical storage. Chemical Physics Letters, 1988, 143, 186-192.	1.2	13
106	Fluorescence studies of excited state intramolecular proton transfer (ESIPT) in molecules isolated in solid argon: 3â€hydroxyflavone and 2,5â€bis(2â€benzoxazolyl)hydroquinone. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1987, 91, 1205-1209.	0.9	21
107	Excited-state intramolecular proton transfer in 3-hydroxylflavone isolated in solid argon: fluoroescence and fluorescence-excitation spectra and tautomer fluorescence rise time. The Journal of Physical Chemistry, 1987, 91, 4261-4265.	2.9	111
108	Bandwidth limited amplification of 220 fs pulses in XeCl: Theoretical and experimental study of temporal and spectral behavior. Optics Communications, 1987, 62, 277-283.	1.0	26

#	Article	IF	CITATIONS
109	Response function theory of time-resolved CARS and CSRS of rotating molecules in liquids under general polarization conditions. Chemical Physics, 1987, 113, 131-147.	0.9	39
110	Determination of femtosecond lifetimes of higher excited singlet states by means of transient photophysical hole-burning. The S2 state of phenanthrene. Chemical Physics, 1986, 110, 131-143.	0.9	24
111	Fully Resonant Sum and Difference Frequency Mixing Spectroscopy. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1985, 89, 344-346.	0.9	1
112	Nonlinear Optics at Solid State Surfaces. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1985, 89, 346-348.	0.9	2
113	Irreducible tensor analysis of sum- and difference-frequency generation in partially oriented samples. Chemical Physics, 1985, 96, 199-215.	0.9	92
114	Double-resonant second harmonic generation from surface coverages of nile-blue A. Optics Communications, 1985, 52, 339-342.	1.0	36
115	Two-photon spectroscopy of the biphenyl chromophore. The electronic excited states of biphenyl and fluorene below 50000 cmâ^'1. Chemical Physics, 1985, 94, 131-145.	0.9	29
116	Experimental determination of the low-lying excited a states of trans-stilbene. Journal of Photochemistry and Photobiology, 1984, 27, 215-231.	0.6	77
117	Theoretical determination of molecular structure and conformation. Computational and Theoretical Chemistry, 1984, 110, 277-291.	1.5	32
118	X-ray photoemission study of satellite structure accompanying core ionization from coordinated nitrogen. Chemical Physics, 1983, 81, 99-112.	0.9	13
119	Analysis of bonding properties in molecular ground and excited states by a Cohen-type bond order. International Journal of Quantum Chemistry, 1983, 24, 747-765.	1.0	14
120	TheT 1 state ofp-nitroaniline and related molecules: A CNDO/S study. Theoretica Chimica Acta, 1983, 63, 177-194.	0.9	16
121	Two-photon excitation spectroscopy of phenanthrene singlet states below 50000 cmâ^'1. Chemical Physics Letters, 1983, 97, 324-330.	1.2	22
122	Resonant non-linear spectroscopy in strong fields. Chemical Physics, 1983, 75, 133-155.	0.9	75
123	Accessibility of the lowest quintet state of organic molecules through triplet-triplet annihilation; an indo ci study. Chemical Physics, 1983, 78, 1-16.	0.9	61
124	Excited singlet states of "hairpin" polyenes. Journal of the American Chemical Society, 1983, 105, 6211-6220.	6.6	11
125	Spectroscopic and lineâ€narrowing properties of resonant sum and difference frequency generation. Journal of Chemical Physics, 1983, 78, 3398-3409.	1.2	47
126	Spectroscopy Using Sum- and Difference-Frequency Generation in Molecular Solids. Physical Review Letters, 1983, 51, 2221-2223.	2.9	13

#	Article	IF	CITATIONS
127	Importance of initial and final states as intermediate states in twoâ€photon spectroscopy of polar molecules. Journal of Chemical Physics, 1982, 76, 5755-5760.	1.2	128
128	Calculation of transition metal compounds using an extension of the CNDO formalism. Molecular Physics, 1982, 45, 427-439.	0.8	14
129	Theoretical Investigations on the Valence Tautomerism between 1,6-Methanol[10]annulene and Tricyclo[4.4.1.01,6]undeca-2,4,7,9-tetraene. Angewandte Chemie International Edition in English, 1982, 21, 865-866.	4.4	42
130	Theoretische Untersuchungen zur Valenztautomerie zwischen 1,6â€Methano[10]annulen und Tricyclo[4.4.1.0 ^{1,6}]undecaâ€2,4,7,9â€ŧetraen. Angewandte Chemie, 1982, 94, 877-878.	1.6	39
131	Two-photon spectroscopy of the low-lying singlet states of naphthalene and acenaphthene. Chemical Physics Letters, 1981, 84, 471-478.	1.2	66
132	Two-photon spectroscopy of dipole-forbidden transitions. Chemical Physics Letters, 1981, 83, 615-621.	1.2	54
133	Calculation of transition metal compounds using an extension of the CNDO-formalism. Theoretica Chimica Acta, 1980, 57, 181-207.	0.9	27
134	Excited states of methano-bridged [10]-, [14]-, and [18]annulenes. Evidence for strong transannular interaction, and relation to homoaromaticity. Journal of the American Chemical Society, 1980, 102, 6412-6417.	6.6	59
135	Twoâ€photon spectroscopy of dipoleâ€forbidden transitions. II. Calculation of twoâ€photon cross sections by the CNDO–CI method. Journal of Chemical Physics, 1979, 70, 5427-5437.	1.2	75
136	Two-photon spectroscopy of dipole-forbidden transitions. Theoretica Chimica Acta, 1979, 53, 221-251.	0.9	87