Filippos Bantis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/703380/publications.pdf

Version: 2024-02-01

		759233	580821
25	766	12	25
papers	citations	h-index	g-index
25	25	25	710
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Scientia Horticulturae, 2018, 235, 437-451.	3.6	259
2	Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum, but variably affects transplant success. Scientia Horticulturae, 2016, 198, 277-283.	3.6	151
3	A comprehensive review on carotenoids in foods and feeds: <i>status quo</i> , applications, patents, and research needs. Critical Reviews in Food Science and Nutrition, 2022, 62, 1999-2049.	10.3	132
4	Assessing Quantitative Criteria for Characterization of Quality Categories for Grafted Watermelon Seedlings. Horticulturae, 2019, 5, 16.	2.8	25
5	Bichromatic red and blue LEDs during healing enhance the vegetative growth and quality of grafted watermelon seedlings. Scientia Horticulturae, 2020, 261, 109000.	3.6	24
6	Light emitting diodes (LEDs) affect morphological, physiological and phytochemical characteristics of pomegranate seedlings. Scientia Horticulturae, 2018, 234, 267-274.	3.6	19
7	Light Spectrum Differentially Affects the Yield and Phytochemical Content of Microgreen Vegetables in a Plant Factory. Plants, 2021, 10, 2182.	3.5	17
8	Physiological and Phytochemical Responses of Spinach Baby Leaves Grown in a PFAL System with LEDs and Saline Nutrient Solution. Agriculture (Switzerland), 2020, 10, 574.	3.1	14
9	Influence of Pre-Harvest Factors on Postharvest Quality of Fresh-Cut and Baby Leafy Vegetables. Agronomy, 2020, 10, 172.	3.0	14
10	Blue light promotes vascular reconnection, while red light boosts the physiological response and quality of grafted watermelon seedlings. Scientific Reports, 2021, 11, 21754.	3.3	14
11	Impact of Scion and Rootstock Seedling Quality Selection on the Vigor of Watermelon–Interspecific Squash Grafted Seedlings. Agriculture (Switzerland), 2020, 10, 326.	3.1	13
12	Controlled rootâ€zone temperature effect on baby leaf vegetables yield and quality in a floating system under mild and extreme weather conditions. Journal of the Science of Food and Agriculture, 2021, 101, 3933-3941.	3.5	13
13	Morphology, development, and transplant potential of Prunus aviumand Cornus sanguinea seedlings growing under different LED lights. Turkish Journal of Biology, 2017, 41, 314-321.	0.8	10
14	Strategic Successive Harvesting of Rocket and Spinach Baby Leaves Enhanced Their Quality and Production Efficiency. Agriculture (Switzerland), 2021, 11, 465.	3.1	10
15	Optimal LED Wavelength Composition for the Production of High-Quality Watermelon and Interspecific Squash Seedlings Used for Grafting. Agronomy, 2019, 9, 870.	3.0	9
16	Exploitation of Liquid Digestate as the Sole Nutrient Source for Floating Hydroponic Cultivation of Baby Lettuce (Lactuca sativa) in Greenhouses. Energies, 2021, 14, 7199.	3.1	9
17	Field Performances of Mediterranean Oaks in Replicate Common Gardens for Future Reforestation under Climate Change in Central and Southern Europe: First Results from a Four-Year Study. Forests, 2021, 12, 678.	2.1	6
18	Differential ecophysiological responses to seasonal drought of three co-existing oak species in northern Greece. Plant Biosystems, 2019, 153, 378-384.	1.6	5

#	Article	IF	CITATION
19	Influence of Light Spectra from LEDs and Scion × Rootstock Genotype Combinations on the Quality of Grafted Watermelon Seedlings. Plants, 2021, 10, 353.	3.5	5
20	A Sustainable Intercropping System for Organically Produced Lettuce and Green Onion with the Use of Arbuscular Mycorrhizal Inocula. Horticulturae, 2022, 8, 466.	2.8	4
21	A Light Recipe including Far-Red Wavelength during Healing of Grafted Watermelon Seedlings Enhances the Floral Development and Yield Earliness. Agriculture (Switzerland), 2022, 12, 982.	3.1	4
22	Testing the potential of LEDs to enhance growth and quality characteristics of Salvia fruticosa. Zahradnictvi (Prague, Czech Republic: 1992), 2019, 46, 98-106.	0.9	3
23	Comparative Transcriptome Analysis in Homo- and Hetero-Grafted Cucurbit Seedlings. Frontiers in Plant Science, 2021, 12, 691069.	3.6	3
24	Light Spectrum Variably Affects the Acclimatization of Grafted Watermelon Seedlings While Maintaining Fruit Quality. Horticulturae, 2022, 8, 10.	2.8	2
25	Proposed Light Wavelengths during Healing of Grafted Tomato Seedlings Enhance Their Adaptation to Transplant Shock. Agriculture (Switzerland), 2022, 12, 797.	3.1	1