
Ilya V Veksler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7033449/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Liquid immiscibility and its role at the magmatic–hydrothermal transition: a summary of experimental studies. Chemical Geology, 2004, 210, 7-31.	3.3	191
2	Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochimica Et Cosmochimica Acta, 2012, 79, 20-40.	3.9	177
3	Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochimica Et Cosmochimica Acta, 2005, 69, 2847-2860.	3.9	175
4	Immiscible silicate liquid partition coefficients: implications for crystal-melt element partitioning and basalt petrogenesis. Contributions To Mineralogy and Petrology, 2006, 152, 685-702.	3.1	109
5	Experimental evidence of three coexisting immiscible fluids in synthetic granitic pegmatite. American Mineralogist, 2002, 87, 775-779.	1.9	100
6	Immiscible hydrous Fe–Ca–P melt and the origin of iron oxide-apatite ore deposits. Nature Communications, 2018, 9, 1415.	12.8	98
7	An experimental study of B-, P- and F-rich synthetic granite pegmatite at 0.1 and 0.2ÂGPa. Contributions To Mineralogy and Petrology, 2002, 143, 673-683.	3.1	97
8	Crystallization of the Skaergaard Intrusion from an Emulsion of Immiscible Iron- and Silica-rich Liquids: Evidence from Melt Inclusions in Plagioclase. Journal of Petrology, 2011, 52, 345-373.	2.8	95
9	Experimental study of REE, Ba, Sr, Mo and W partitioning between carbonatitic melt and aqueous fluid with implications for rare metal mineralization. Contributions To Mineralogy and Petrology, 2016, 171, 1.	3.1	83
10	Experimental Crystallization of Undercooled Felsic Liquids: Generation of Pegmatitic Texture. Journal of Petrology, 2017, 58, 539-568.	2.8	60
11	Partitioning of Mg, Ca, and Na between carbonatite melt and hydrous fluid at 0.1–0.2 GPa. Contributions To Mineralogy and Petrology, 2000, 138, 27-34.	3.1	42
12	Extreme iron enrichment and liquid immiscibility in mafic intrusions: Experimental evidence revisited. Lithos, 2009, 111, 72-82.	1.4	41
13	Trace-element composition of minerals and rocks in the Belaya Zima carbonatite complex (Russia): Implications for the mechanisms of magma evolution and carbonatite formation. Lithos, 2017, 284-285, 91-108.	1.4	36
14	ls natrocarbonatite a cognate fluid condensate?. Contributions To Mineralogy and Petrology, 2002, 142, 425-435.	3.1	33
15	Petrogenesis of the Ultrapotassic Fanshan Intrusion in the North China Craton: Implications for Lithospheric Mantle Metasomatism and the Origin of Apatite Ores. Journal of Petrology, 2015, 56, 893-918.	2.8	33
16	Phase equilibria in the silica-undersaturated part of the KAlSiO 4 - Mg 2 SiO 4 - Ca 2 SiO 4 - SiO 2 - F system at 1 atm and the larnite-normative trend of melt evolution. Contributions To Mineralogy and Petrology, 1998, 131, 347-363.	3.1	30
17	A fundamental dispute: A discussion of "On some fundamentals of igneous petrology―by Bruce D. Marsh, Contributions to Mineralogy and Petrology (2013) 166: 665–690. Contributions To Mineralogy and Petrology, 2015, 169, 1.	3.1	30
	Experimental study of trace element distribution between calcite, fluorite and carbonatitic melt in		

LAPETIMETICAL Study of trace element distribution between calcite, fluorite and carbonatitic melt in
the system CaCO3 + CaF2 + Na2CO3 ±â€‰Ca3(PO4)2 at 100ÂMPa. Contributions To Miaaralogy and Petrolog 2019, 174, 1.

ILYA V VEKSLER

#	ARTICLE	IF	CITATIONS
19	Liquid unmixing kinetics and the extent of immiscibility in the system K2O–CaO–FeO–Al2O3–SiO2. Chemical Geology, 2008, 256, 119-130.	3.3	24
20	Crystallization of AlPO ₄ -SiO ₂ solid solutions from granitic melt and implications for P-rich melt inclusions in pegmatitic quartz. American Mineralogist, 2003, 88, 1724-1730.	1.9	23
21	Silicate Liquid Immiscibility in Layered Intrusions. Springer Geology, 2015, , 229-258.	0.3	20
22	Experimental confirmation of high-temperature silicate liquid immiscibility in multicomponent ferrobasaltic systems. American Mineralogist, 2015, 100, 1304-1307.	1.9	20
23	Element partitioning between immiscible borosilicate liquids: A high-temperature centrifuge study. Geochimica Et Cosmochimica Acta, 2002, 66, 2603-2614.	3.9	19
24	Electrochemical Processes in a Crystal Mush: Cyclic Units in the Upper Critical Zone of the Bushveld Complex, South Africa. Journal of Petrology, 2015, 56, 1229-1250.	2.8	19
25	Liquid Immiscibility and Evolution of Basaltic Magma: Reply to S. A. Morse, A. R. McBirney and A. R. Philpotts. Journal of Petrology, 2008, 49, 2177-2186.	2.8	18
26	The origin of nelsonite constrained by melting experiment and melt inclusions in apatite: The Damiao anorthosite complex, North China Craton. Gondwana Research, 2017, 42, 163-176.	6.0	17
27	Chemical and Textural Re-equilibration in the UG2 Chromitite Layer of the Bushveld Complex, South Africa. Journal of Petrology, 2018, 59, 1193-1216.	2.8	17
28	Interfacial tension between immiscible liquids in the system K2O-FeO-Fe2O3-Al2O3-SiO2 and implications for the kinetics of silicate melt unmixing. American Mineralogist, 2010, 95, 1679-1685.	1.9	16
29	Immiscible silicate liquids: K and Fe distribution as a test for chemical equilibrium and insight into the kinetics of magma unmixing. Contributions To Mineralogy and Petrology, 2021, 176, 1.	3.1	5
30	Interfacial tension between immiscible liquids in alkaline earth – boron oxide binary systems. Journal of Non-Crystalline Solids, 2010, 356, 1163-1167.	3.1	3