Dmitri V Krysko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7033378/publications.pdf Version: 2024-02-01

DMITPI V KOVSKO

#	Article	IF	CITATIONS
1	Immunogenic cell death and DAMPs in cancer therapy. Nature Reviews Cancer, 2012, 12, 860-875.	12.8	1,984
2	Necroptosis: The Release of Damage-Associated Molecular Patterns and Its Physiological Relevance. Immunity, 2013, 38, 209-223.	6.6	1,085
3	Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nature Reviews Cancer, 2019, 19, 405-414.	12.8	742
4	Consensus guidelines for the detection of immunogenic cell death. Oncolmmunology, 2014, 3, e955691.	2.1	686
5	A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO Journal, 2012, 31, 1062-1079.	3.5	641
6	Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends in Immunology, 2011, 32, 157-164.	2.9	564
7	Apoptosis and necrosis: Detection, discrimination and phagocytosis. Methods, 2008, 44, 205-221.	1.9	546
8	Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. Journal of Clinical Investigation, 2018, 128, 3341-3355.	3.9	406
9	ER stress-induced inflammation: does it aid or impede disease progression?. Trends in Molecular Medicine, 2012, 18, 589-598.	3.5	340
10	Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Frontiers in Immunology, 2015, 6, 588.	2.2	317
11	Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity. Cell Reports, 2016, 15, 274-287.	2.9	317
12	Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 1709-1726.	2.2	295
13	Immunogenic cell death, DAMPs and anticancer therapeutics: An emerging amalgamation. Biochimica Et Biophysica Acta: Reviews on Cancer, 2010, 1805, 53-71.	3.3	292
14	Molecular Mechanisms and Pathophysiology of Necrotic Cell Death. Current Molecular Medicine, 2008, 8, 207-220.	0.6	283
15	Targeting immunogenic cancer cell death by photodynamic therapy: past, present and future. , 2021, 9, e001926.		254
16	ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy, 2013, 9, 1292-1307.	4.3	252
17	Hypericin-based photodynamic therapy induces surface exposure of damage-associated molecular patterns like HSP70 and calreticulin. Cancer Immunology, Immunotherapy, 2012, 61, 215-221.	2.0	246
18	Connexin-related signaling in cell death: to live or let die?. Cell Death and Differentiation, 2009, 16, 524-536.	5.0	234

#	Article	IF	CITATIONS
19	Many faces of DAMPs in cancer therapy. Cell Death and Disease, 2013, 4, e631-e631.	2.7	234
20	Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. , 2020, 8, e001369.		220
21	Inducers of immunogenic cancer cell death. Cytokine and Growth Factor Reviews, 2013, 24, 319-333.	3.2	209
22	Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods, 2013, 61, 117-129.	1.9	193
23	Immunogenic cell death induced by a new photodynamic therapy based on photosens and photodithazine. , 2019, 7, 350.		183
24	Phagocytosis of Necrotic Cells by Macrophages Is Phosphatidylserine Dependent and Does Not Induce Inflammatory Cytokine Production. Molecular Biology of the Cell, 2004, 15, 1089-1100.	0.9	177
25	Macrophages use different internalization mechanisms to clear apoptotic and necrotic cells. Cell Death and Differentiation, 2006, 13, 2011-2022.	5.0	167
26	Gap junctions and the propagation of cell survival and cell death signals. Apoptosis: an International Journal on Programmed Cell Death, 2005, 10, 459-469.	2.2	155
27	Alternatively activated macrophages and impaired phagocytosis of S.Âaureus in chronic rhinosinusitis. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 396-403.	2.7	144
28	DAMPs activating innate and adaptive immune responses in COPD. Mucosal Immunology, 2014, 7, 215-226.	2.7	136
29	DAMPs and PDT-mediated photo-oxidative stress: exploring the unknown. Photochemical and Photobiological Sciences, 2011, 10, 670-680.	1.6	131
30	Cigarette smoke-induced necroptosis and DAMP release trigger neutrophilic airway inflammation in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L377-L386.	1.3	130
31	Necroptotic cell death in antiâ€cancer therapy. Immunological Reviews, 2017, 280, 207-219.	2.8	126
32	ATP Release from Dying Autophagic Cells and Their Phagocytosis Are Crucial for Inflammasome Activation in Macrophages. PLoS ONE, 2012, 7, e40069.	1.1	121
33	Severity of doxorubicinâ€induced small intestinal mucositis is regulated by the TLRâ€2 and TLRâ€9 pathways. Journal of Pathology, 2012, 226, 598-608.	2.1	117
34	Life and death of female gametes during oogenesis and folliculogenesis. Apoptosis: an International Journal on Programmed Cell Death, 2008, 13, 1065-1087.	2.2	114
35	BNIP3 supports melanoma cell migration and vasculogenic mimicry by orchestrating the actin cytoskeleton. Cell Death and Disease, 2014, 5, e1127-e1127.	2.7	113
36	Chapter 16 Methods for Distinguishing Apoptotic from Necrotic Cells and Measuring Their Clearance. Methods in Enzymology, 2008, 442, 307-341.	0.4	111

#	Article	IF	CITATIONS
37	Oxidized PEs trigger death. Nature Chemical Biology, 2017, 13, 4-5.	3.9	110
38	The IL-33/ST2 axis is crucial in type 2 airway responses induced by Staphylococcus aureus –derived serine protease–like protein D. Journal of Allergy and Clinical Immunology, 2018, 141, 549-559.e7.	1.5	109
39	Necroptosis in Immuno-Oncology and Cancer Immunotherapy. Cells, 2020, 9, 1823.	1.8	109
40	TLR-2 and TLR-9 are sensors of apoptosis in a mouse model of doxorubicin-induced acute inflammation. Cell Death and Differentiation, 2011, 18, 1316-1325.	5.0	102
41	Mitochondrial Cx43 hemichannels contribute to mitochondrial calcium entry and cell death in the heart. Basic Research in Cardiology, 2017, 112, 27.	2.5	98
42	The emergence of phox-ER stress induced immunogenic apoptosis. Oncolmmunology, 2012, 1, 786-788.	2.1	89
43	Which cell death modality wins the contest for photodynamic therapy of cancer?. Cell Death and Disease, 2022, 13, 455.	2.7	86
44	Immunogenic Apoptotic Cell Death and Anticancer Immunity. Advances in Experimental Medicine and Biology, 2016, 930, 133-149.	0.8	82
45	High-throughput fabrication of vascularized spheroids for bioprinting. Biofabrication, 2018, 10, 035009.	3.7	80
46	Resistance to anticancer vaccination effect is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal. Oncotarget, 2015, 6, 26841-26860.	0.8	79
47	Mitochondrial Transmembrane Potential Changes Support the Concept of Mitochondrial Heterogeneity During Apoptosis. Journal of Histochemistry and Cytochemistry, 2001, 49, 1277-1284.	1.3	73
48	Necroptosis: A Novel Cell Death Modality and Its Potential Relevance for Critical Care Medicine. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 415-428.	2.5	72
49	Therapeutic Targeting of Connexin Channels: New Views and Challenges. Trends in Molecular Medicine, 2018, 24, 1036-1053.	3.5	71
50	From regulation of dying cell engulfment to development of anti-cancer therapy. Cell Death and Differentiation, 2008, 15, 29-38.	5.0	65
51	Ferroptosis and Photodynamic Therapy Synergism: Enhancing Anticancer Treatment. Trends in Cancer, 2021, 7, 484-487.	3.8	65
52	Calcium and connexin-based intercellular communication, a deadly catch?. Cell Calcium, 2011, 50, 310-321.	1.1	64
53	Gap Junctional Communication and Connexin43 Expression in Relation to Apoptotic Cell Death and Survival of Granulosa Cells. Journal of Histochemistry and Cytochemistry, 2004, 52, 1199-1207.	1.3	61
54	Mechanisms of internalization of apoptotic and necrotic L929 cells by a macrophage cell line studied by electron microscopy. Journal of Morphology, 2003, 258, 336-345.	0.6	56

#	Article	IF	CITATIONS
55	Immunogenic ferroptosis and where to find it?. , 2021, 9, e003430.		54
56	Staphylococcus aureus Orchestrates Type 2 Airway Diseases. Trends in Molecular Medicine, 2019, 25, 696-707.	3.5	53
57	A real-time fluorometric method for the simultaneous detection of cell death type and rate. Nature Protocols, 2016, 11, 1444-1454.	5.5	50
58	Macrophages regulate the clearance of living cells by calreticulin. Nature Communications, 2018, 9, 4644.	5.8	50
59	Transfer of IP3 through gap junctions is critical, but not sufficient, for the spread of apoptosis. Cell Death and Differentiation, 2012, 19, 947-957.	5.0	49
60	IP3, a small molecule with a powerful message. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1772-1786.	1.9	49
61	Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1099-1120.	1.9	48
62	Peroxisomal multifunctional protein-2 deficiency causes neuroinflammation and degeneration of Purkinje cells independent of very long chain fatty acid accumulation. Neurobiology of Disease, 2013, 58, 258-269.	2.1	44
63	Protease/antiprotease network in allergy: The role of <i>Staphylococcus aureus</i> proteaseâ€ike proteins. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2077-2086.	2.7	41
64	An emerging role for nanomaterials in increasing immunogenicity of cancer cell death. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 99-108.	3.3	41
65	AFM Analysis Enables Differentiation between Apoptosis, Necroptosis, and Ferroptosis in Murine Cancer Cells. IScience, 2020, 23, 101816.	1.9	41
66	Extracellular ATP and P2X7 receptor exert context-specific immunogenic effects after immunogenic cancer cell death. Cell Death and Disease, 2016, 7, e2097-e2097.	2.7	40
67	Clearance of dead cells: mechanisms, immune responses and implication in the development of diseases. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 995-997.	2.2	38
68	At the cross-point of connexins, calcium, and ATP: blocking hemichannels inhibits vasoconstriction of rat small mesenteric arteries. Cardiovascular Research, 2017, 113, 195-206.	1.8	37
69	Impairment of phagocytosis of apoptotic cells and its role in chronic airway diseases. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 1137-1146.	2.2	36
70	Low concentration of uncouplers of oxidative phosphorylation decreases the TNF-induced endothelial permeability and lethality in mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 968-977.	1.8	36
71	Novel porphyrazine-based photodynamic anti-cancer therapy induces immunogenic cell death. Scientific Reports, 2021, 11, 7205.	1.6	36
72	Cx43 channels and signaling via IP3/Ca2+, ATP, and ROS/NO propagate radiation-induced DNA damage to non-irradiated brain microvascular endothelial cells. Cell Death and Disease, 2020, 11, 194.	2.7	34

#	Article	IF	CITATIONS
73	Redox (phospho)lipidomics of signaling in inflammation and programmed cell death. Journal of Leukocyte Biology, 2019, 106, 57-81.	1.5	33
74	Immunodominant AH1 Antigen-Deficient Necroptotic, but Not Apoptotic, Murine Cancer Cells Induce Antitumor Protection. Journal of Immunology, 2020, 204, 775-787.	0.4	33
75	Cell surface-expressed phosphatidylserine as therapeutic target to enhance phagocytosis of apoptotic cells. Cell Death and Differentiation, 2013, 20, 49-56.	5.0	30
76	Deep learning with digital holographic microscopy discriminates apoptosis and necroptosis. Cell Death Discovery, 2021, 7, 229.	2.0	28
77	Blocking connexin43 hemichannels protects mice against tumour necrosis factor-induced inflammatory shock. Scientific Reports, 2019, 9, 16623.	1.6	24
78	Targeting topoisomerase II with trypthantrin derivatives: Discovery of 7-((2-(dimethylamino)ethyl)amino)indolo[2,1-b]quinazoline-6,12-dione as an antiproliferative agent and to treat cancer. European Journal of Medicinal Chemistry, 2020, 202, 112504.	2.6	24
79	A 3D Cell Death Assay to Quantitatively Determine Ferroptosis in Spheroids. Cells, 2020, 9, 703.	1.8	21
80	Effect of novel porphyrazine photosensitizers on normal and tumor brain cells. Journal of Biophotonics, 2020, 13, e201960077.	1.1	19
81	Immunogenic Cell Death and Role of Nanomaterials Serving as Therapeutic Vaccine for Personalized Cancer Immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	19
82	Noninvasive Whole-Body Imaging of Phosphatidylethanolamine as a Cell Death Marker Using ^{99m} Tc-Duramycin During TNF-Induced SIRS. Journal of Nuclear Medicine, 2018, 59, 1140-1145.	2.8	18
83	TNF/TNF-R1 pathway is involved in doxorubicin-induced acute sterile inflammation. Cell Death and Disease, 2013, 4, e961-e961.	2.7	16
84	The adjuvantâ€like activity of <scp>s</scp> taphylococcal enterotoxin <scp>B</scp> in a murine asthma model is independent of <scp>IL</scp> â€I <scp>R</scp> signaling. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 446-453.	2.7	15
85	Classification of analytics, sensorics, and bioanalytics with polyelectrolyte multilayer capsules. Analytical and Bioanalytical Chemistry, 2020, 412, 5015-5029.	1.9	15
86	Curcumin-1,2,3-Triazole Conjugation for Targeting the Cancer Apoptosis Machinery. Molecules, 2020, 25, 3066.	1.7	14
87	Lipid homeostasis and inflammatory activation are disturbed in classically activated macrophages with peroxisomal <i>β</i> â€oxidation deficiency. Immunology, 2018, 153, 342-356.	2.0	13
88	Artificial Intelligence Predicts Severity of COVID-19 Based on Correlation of Exaggerated Monocyte Activation, Excessive Organ Damage and Hyperinflammatory Syndrome: A Prospective Clinical Study. Frontiers in Immunology, 2021, 12, 715072.	2.2	13
89	Wavelet modeling and prediction of the stability of states: the Roman Empire and the European Union. Communications in Nonlinear Science and Numerical Simulation, 2015, 26, 265-275.	1.7	12
90	Encapsulation of cells in gold nanoparticle functionalized hybrid Layer-by-Layer (LbL) hybrid shells – Remote effect of laser light. Applied Surface Science Advances, 2021, 5, 100111.	2.9	12

#	Article	IF	CITATIONS
91	Growth Inhibition of Pancreatic Cancer by Experimental Treatment With 4-Phenylbutyrate Is Associated With Increased Expression of Connexin 43. Oncology Research, 2012, 20, 103-111.	0.6	11
92	Mouse Strain-Dependent Difference Toward the Staphylococcus aureus Allergen Serine Protease-Like Protein D Reveals a Novel Regulator of IL-33. Frontiers in Immunology, 2020, 11, 582044.	2.2	11
93	Mitotic catastrophe as a prestage to necrosis in mouse liver cells treated with <i>Helicobacter pullorum</i> sonicates. Journal of Morphology, 2009, 270, 921-928.	0.6	8
94	Cyanoarylporphyrazines with High Viscosity Sensitivity: A Step towards Dosimetry-Assisted Photodynamic Cancer Treatment. Molecules, 2021, 26, 5816.	1.7	6
95	Effect of Photosensitizers Photosens, Photodithazine and Hypericin on Glioma Ðjells and Primary Neuronal Cultures: a Comparative Analysis. Sovremennye Tehnologii V Medicine, 2019, 11, 52.	0.4	5
96	Unraveling of Functional Activity of Primary Hippocampal Neuron-Glial Networks in Photodynamic Therapy Based on Tetracyanotetra(aryl)porphyrazines. Cells, 2022, 11, 1212.	1.8	5
97	Molecular Pathways of Different Types of Cell Death: Many Roads to Death. , 2009, , 3-31.		2
98	Contribution of ER Stress to Immunogenic Cancer Cell Death. , 2012, , 413-428.		2
99	ER Stress and Inflammation. , 2012, , 257-279.		2
100	Immunogenic Cell Death and Emission of Damps: Calreticulin and ATP. Journal of Nanomedicine & Biotherapeutic Discovery, 2012, 2, .	0.6	2
101	Impact of the histone deacetylase inhibitor 4-phenylbutyrate on the clearance of apoptotic pancreatic carcinoma cells by human macrophages. International Journal of Oncology, 2012, 40, 427-35.	1.4	О