
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7033331/publications.pdf Version: 2024-02-01

ΝΛΝ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Efficient oxygen reduction electrocatalyst derived from facile Fe,Nâ^'surface treatment of carbon black. Journal of Colloid and Interface Science, 2022, 605, 101-109.	5.0	4
2	Epitaxial Growth of Ultrathin Highly Crystalline Pt–Ni Nanostructure on a Metal Carbide Template for Efficient Oxygen Reduction Reaction. Advanced Materials, 2022, 34, e2109188.	11.1	30
3	Nitrogen-coordinated single-atom catalysts with manganese and cobalt sites for acidic oxygen reduction. Journal of Materials Chemistry A, 2022, 10, 5930-5936.	5.2	21
4	High-surface-area titanium nitride nanosheets as zinc anode coating for dendrite-free rechargeable aqueous batteries. Science China Materials, 2022, 65, 1771-1778.	3.5	21
5	Highly efficient oxygen evolution catalysis achieved by NiFe oxyhydroxide clusters anchored on carbon black. Journal of Materials Chemistry A, 2022, 10, 10342-10349.	5.2	13
6	Nanostructures Composed of Dual Plasmonic Materials Exhibiting High Thermal Stability and SERS Enhancement. Particle and Particle Systems Characterization, 2021, 38, 2000321.	1.2	8
7	Waterâ€Induced Formation of Ni ₂ P–Ni ₁₂ P ₅ Interfaces with Superior Electrocatalytic Activity toward Hydrogen Evolution Reaction. Small, 2021, 17, e2006770.	5.2	83
8	Solid–liquid phase transition induced electrocatalytic switching from hydrogen evolution to highly selective CO2 reduction. Nature Catalysis, 2021, 4, 202-211.	16.1	89
9	Subsize Pt-based intermetallic compound enables long-term cyclic mass activity for fuel-cell oxygen reduction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	86
10	Surface microenvironment optimization―induced robust oxygen reduction for neutral zincâ€air batteries. Natural Sciences, 2021, 1, e20210005.	1.0	6
11	Constructing Graphiticâ€Nitrogenâ€Bonded Pentagons in Interlayerâ€Expanded Graphene Matrix toward Carbonâ€Based Electrocatalysts for Acidic Oxygen Reduction Reaction. Advanced Materials, 2021, 33, e2103133.	11.1	47
12	Uncovering the Promotion of CeO ₂ /CoS _{1.97} Heterostructure with Specific Spatial Architectures on Oxygen Evolution Reaction. Advanced Materials, 2021, 33, e2102593.	11.1	118
13	Exploring Structure-function Relationship of Two-dimensional Electrocatalysts with Synchrotron Radiation X-ray Absorption Spectrum. Current Chinese Science, 2021, 1, 22-42.	0.2	2
14	Interfacial Engineering of Metal/Metal Oxide Heterojunctions toward Oxygen Reduction and Evolution Reactions. ChemPlusChem, 2021, 86, 1586-1601.	1.3	14
15	High-purity pyrrole-type FeN ₄ sites as a superior oxygen reduction electrocatalyst. Energy and Environmental Science, 2020, 13, 111-118.	15.6	327
16	Two-Dimensional Hierarchical Fe–N–C Electrocatalyst for Zn-Air Batteries with Ultrahigh Specific Capacity. , 2020, 2, 35-41.		34
17	Nanopore Confinement of Electrocatalysts Optimizing Triple Transport for an Ultrahighâ€Powerâ€Density Zinc–Air Fuel Cell with Robust Stability. Advanced Materials, 2020, 32, e2003251.	11.1	104
18	Stepwise Hollow Prussian Blue Nanoframes/Carbon Nanotubes Composite Film as Ultrahigh Rate Sodium Ion Cathode. Advanced Functional Materials, 2020, 30, 2002624.	7.8	49

#	Article	IF	CITATIONS
19	High-Density Planar-like Fe2N6 Structure Catalyzes Efficient Oxygen Reduction. Matter, 2020, 3, 509-521.	5.0	184
20	(Gold triangular nanoplate core)@(silver shell) nanostructures as highly sensitive and selective plasmonic nanoprobes for hydrogen sulfide detection. Nanoscale, 2020, 12, 20250-20257.	2.8	7
21	Surface Nitrogen-Injection Engineering for High Formation Rate of CO ₂ Reduction to Formate. Nano Letters, 2020, 20, 6097-6103.	4.5	71
22	Surface/interface nanoengineering for rechargeable Zn–air batteries. Energy and Environmental Science, 2020, 13, 1132-1153.	15.6	344
23	Atomic Insights of Iron Doping in Nickel Hydroxide Nanosheets for Enhanced Oxygen Catalysis to Boost Broad Temperature Workable Zincâ^'Air Batteries. ChemCatChem, 2019, 11, 6002-6007.	1.8	17
24	Microstructure and surface control of MXene films for water purification. Nature Sustainability, 2019, 2, 856-862.	11.5	273
25	Tailoring Electronic Structure of Atomically Dispersed Metal–N ₃ S ₁ Active Sites for Highly Efficient Oxygen Reduction Catalysis. , 2019, 1, 139-146.		34
26	Broadband Light Harvesting and Unidirectional Electron Flow for Efficient Electron Accumulation for Hydrogen Generation. Angewandte Chemie, 2019, 131, 10108-10112.	1.6	17
27	Broadband Light Harvesting and Unidirectional Electron Flow for Efficient Electron Accumulation for Hydrogen Generation. Angewandte Chemie - International Edition, 2019, 58, 10003-10007.	7.2	86
28	Interfacial Defect Engineering for Improved Portable Zinc–Air Batteries with a Broad Working Temperature. Angewandte Chemie - International Edition, 2019, 58, 9459-9463.	7.2	139
29	Interfacial Defect Engineering for Improved Portable Zinc–Air Batteries with a Broad Working Temperature. Angewandte Chemie, 2019, 131, 9559-9563.	1.6	23
30	Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6635-6640.	3.3	242
31	Ultrathin Cobalt Oxide Layers as Electrocatalysts for Highâ€Performance Flexible Zn–Air Batteries. Advanced Materials, 2019, 31, e1807468.	11.1	227
32	Photoredox catalysis over graphene aerogel-supported composites. Journal of Materials Chemistry A, 2018, 6, 4590-4604.	5.2	171
33	An adaptive geometry regulation strategy for 3D graphene materials: towards advanced hybrid photocatalysts. Chemical Science, 2018, 9, 8876-8882.	3.7	29
34	Dynamic Migration of Surface Fluorine Anions on Cobaltâ€Based Materials to Achieve Enhanced Oxygen Evolution Catalysis. Angewandte Chemie, 2018, 130, 15697-15701.	1.6	11
35	Dynamic Migration of Surface Fluorine Anions on Cobaltâ€Based Materials to Achieve Enhanced Oxygen Evolution Catalysis. Angewandte Chemie - International Edition, 2018, 57, 15471-15475.	7.2	178
36	Advances in materials engineering of CdS coupled with dual cocatalysts of graphene and MoS ₂ for photocatalytic hydrogen evolution. Pure and Applied Chemistry, 2018, 90, 1379-1392.	0.9	4

#	Article	IF	CITATIONS
37	Stressâ€Transferâ€Induced Inâ€Situ Formation of Ultrathin Nickel Phosphide Nanosheets for Efficient Hydrogen Evolution. Angewandte Chemie, 2018, 130, 13266-13269.	1.6	26
38	Stressâ€Transferâ€Induced Inâ€Situ Formation of Ultrathin Nickel Phosphide Nanosheets for Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 13082-13085.	7.2	97
39	Graphene and its derivatives as versatile templates for materials synthesis and functional applications. Nanoscale, 2017, 9, 2398-2416.	2.8	121
40	Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017, 46, 337-365.	18.7	4,505
41	Aluminumâ€Based Plasmonic Photocatalysis. Particle and Particle Systems Characterization, 2017, 34, 1600357.	1.2	46
42	3D Nitrogenâ€Anionâ€Decorated Nickel Sulfides for Highly Efficient Overall Water Splitting. Advanced Materials, 2017, 29, 1701584.	11.1	478
43	Insight into the Role of Size Modulation on Tuning the Band Gap and Photocatalytic Performance of Semiconducting Nitrogen-Doped Graphene. Langmuir, 2017, 33, 3161-3169.	1.6	36
44	MoS ₂ /Ni ₃ S ₂ nanorod arrays well-aligned on Ni foam: a 3D hierarchical efficient bifunctional catalytic electrode for overall water splitting. RSC Advances, 2017, 7, 46286-46296.	1.7	60
45	Enhanced Catalytic Activity in Nitrogen-Anion Modified Metallic Cobalt Disulfide Porous Nanowire Arrays for Hydrogen Evolution. ACS Catalysis, 2017, 7, 7405-7411.	5.5	152
46	Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science, 2016, 354, 1410-1414.	6.0	1,262
47	Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nature Photonics, 2016, 10, 473-482.	15.6	298
48	Vertically aligned ZnO–Au@CdS core–shell nanorod arrays as an all-solid-state vectorial Z-scheme system for photocatalytic application. Journal of Materials Chemistry A, 2016, 4, 18804-18814.	5.2	122
49	The endeavour to advance graphene–semiconductor composite-based photocatalysis. CrystEngComm, 2016, 18, 24-37.	1.3	89
50	Two-Dimensional MoS ₂ Nanosheet-Coated Bi ₂ S ₃ Discoids: Synthesis, Formation Mechanism, and Photocatalytic Application. Langmuir, 2015, 31, 4314-4322.	1.6	178
51	Hierarchical Hybrids: Hierarchically CdS Decorated 1D ZnO Nanorodsâ€2D Graphene Hybrids: Low Temperature Synthesis and Enhanced Photocatalytic Performance (Adv. Funct. Mater. 2/2015). Advanced Functional Materials, 2015, 25, 170-170.	7.8	8
52	Promoting Visible‣ight Photocatalysis with Palladium Species as Cocatalyst. ChemCatChem, 2015, 7, 2047-2054.	1.8	24
53	One-dimensional CdS nanowires–CeO ₂ nanoparticles composites with boosted photocatalytic activity. New Journal of Chemistry, 2015, 39, 6756-6764.	1.4	43
54	Carbon nanotubes introduced in different phases of C/PyC/SiC composites: Effect on microstructure and properties of the materials. Composites Science and Technology, 2015, 115, 28-33.	3.8	24

#	Article	IF	CITATIONS
55	Precursor chemistry matters in boosting photoredox activity of graphene/semiconductor composites. Nanoscale, 2015, 7, 18062-18070.	2.8	67
56	Waltzing with the Versatile Platform of Graphene to Synthesize Composite Photocatalysts. Chemical Reviews, 2015, 115, 10307-10377.	23.0	1,017
57	Hierarchically CdS Decorated 1D ZnO Nanorodsâ€2D Graphene Hybrids: Low Temperature Synthesis and Enhanced Photocatalytic Performance. Advanced Functional Materials, 2015, 25, 221-229.	7.8	394
58	Enhancing the visible light photocatalytic performance of ternary CdS–(graphene–Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy. Journal of Materials Chemistry A, 2014, 2, 19156-19166.	5.2	130
59	In situ synthesis of hierarchical In ₂ S ₃ –graphene nanocomposite photocatalyst for selective oxidation. RSC Advances, 2014, 4, 64484-64493.	1.7	28
60	Toward the enhanced photoactivity and photostability of ZnO nanospheres via intimate surface coating with reduced graphene oxide. Journal of Materials Chemistry A, 2014, 2, 9380.	5.2	204
61	Nanochemistry-derived Bi ₂ WO ₆ nanostructures: towards production of sustainable chemicals and fuels induced by visible light. Chemical Society Reviews, 2014, 43, 5276-5287.	18.7	368
62	Strength and toughness improvement in a C/SiC composite reinforced with slurry-prone SiC whiskers. Ceramics International, 2014, 40, 14099-14104.	2.3	28
63	A Unique Silk Mat-Like Structured Pd/CeO ₂ as an Efficient Visible Light Photocatalyst for Green Organic Transformation in Water. ACS Sustainable Chemistry and Engineering, 2013, 1, 1258-1266.	3.2	74