Stuart A Nicklin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7033095/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovascular Research, 2020, 116, 1666-1687.	1.8	1,074
2	Adenovirus Serotype 5 Hexon Mediates Liver Gene Transfer. Cell, 2008, 132, 397-409.	13.5	573
3	Genome-Wide Association Study of Blood Pressure Extremes Identifies Variant near UMOD Associated with Hypertension. PLoS Genetics, 2010, 6, e1001177.	1.5	312
4	Multiple vitamin K-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes. Blood, 2006, 108, 2554-2561.	0.6	256
5	Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nature Biotechnology, 2001, 19, 838-842.	9.4	219
6	Identification of coagulation factor (F)X binding sites on the adenovirus serotype 5 hexon: effect of mutagenesis on FX interactions and gene transfer. Blood, 2009, 114, 965-971.	0.6	158
7	The influence of adenovirus fiber structure and function on vector development for gene therapy. Molecular Therapy, 2005, 12, 384-393.	3.7	157
8	Selective Targeting of Gene Transfer to Vascular Endothelial Cells by Use of Peptides Isolated by Phage Display. Circulation, 2000, 102, 231-237.	1.6	149
9	Ablating Adenovirus Type 5 Fiber–CAR Binding and HI Loop Insertion of the SIGYPLP Peptide Generate an Endothelial Cell-Selective Adenovirus. Molecular Therapy, 2001, 4, 534-542.	3.7	134
10	Angiotensin-(1–7) and angiotensin-(1–9): function in cardiac and vascular remodelling. Clinical Science, 2014, 126, 815-827.	1.8	114
11	Cardiac Hypertrophy Is Inhibited by a Local Pool of cAMP Regulated by Phosphodiesterase 2. Circulation Research, 2015, 117, 707-719.	2.0	105
12	Biodistribution and retargeting of FX-binding ablated adenovirus serotype 5 vectors. Blood, 2010, 116, 2656-2664.	0.6	96
13	Angiotensin-(1-9) Attenuates Cardiac Fibrosis in the Stroke-Prone Spontaneously Hypertensive Rat via the Angiotensin Type 2 Receptor. Hypertension, 2012, 59, 300-307.	1.3	94
14	Angiotensin1â€9 antagonises proâ€hypertrophic signalling in cardiomyocytes via the angiotensin type 2 receptor. Journal of Physiology, 2011, 589, 939-951.	1.3	84
15	Effect of Neutralizing Sera on Factor X-Mediated Adenovirus Serotype 5 Gene Transfer. Journal of Virology, 2009, 83, 479-483.	1.5	72
16	Targeting of Adenovirus Serotype 5 (Ad5) and 5/47 Pseudotyped Vectors In Vivo: Fundamental Involvement of Coagulation Factors and Redundancy of CAR Binding by Ad5. Journal of Virology, 2007, 81, 9568-9571.	1.5	70
17	Requirements for Receptor Engagement during Infection by Adenovirus Complexed with Blood Coagulation Factor X. PLoS Pathogens, 2010, 6, e1001142.	2.1	70
18	G protein-coupled receptor 35: an emerging target in inflammatory and cardiovascular disease. Frontiers in Pharmacology, 2015, 6, 41.	1.6	70

STUART A NICKLIN

#	Article	IF	CITATIONS
19	Runx1 Deficiency Protects Against Adverse Cardiac Remodeling After Myocardial Infarction. Circulation, 2018, 137, 57-70.	1.6	65
20	Adenoviral Delivery of Angiotensin-(1-7) or Angiotensin-(1-9) Inhibits Cardiomyocyte Hypertrophy via the Mas or Angiotensin Type 2 Receptor. PLoS ONE, 2012, 7, e45564.	1.1	55
21	The Antiallergic Mast Cell Stabilizers Lodoxamide and Bufrolin as the First High and Equipotent Agonists of Human and Rat GPR35. Molecular Pharmacology, 2014, 85, 91-104.	1.0	53
22	Adenoviral Serotype 5 Vectors Pseudotyped with Fibers from Subgroup D Show Modified TropismIn VitroandIn Vivo. Human Gene Therapy, 2004, 15, 1054-1064.	1.4	51
23	In vitro andin vivo characterisation of endothelial cell selective adenoviral vectors. Journal of Gene Medicine, 2004, 6, 300-308.	1.4	47
24	RUNX1: an emerging therapeutic target for cardiovascular disease. Cardiovascular Research, 2020, 116, 1410-1423.	1.8	43
25	Manipulating Adenovirus Hexon Hypervariable Loops Dictates Immune Neutralisation and Coagulation Factor X-dependent Cell Interaction In Vitro and In Vivo. PLoS Pathogens, 2015, 11, e1004673.	2.1	42
26	Influence of Coagulation Factor X on In Vitro and In Vivo Gene Delivery by Adenovirus (Ad) 5, Ad35, and Chimeric Ad5/Ad35 Vectors. Molecular Therapy, 2009, 17, 1683-1691.	3.7	41
27	Antagonists of GPR35 Display High Species Ortholog Selectivity and Varying Modes of Action. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 683-695.	1.3	40
28	Gene Therapy With Angiotensin-(1-9) Preserves Left Ventricular Systolic Function After Myocardial Infarction. Journal of the American College of Cardiology, 2016, 68, 2652-2666.	1.2	39
29	Onset of Experimental Severe Cardiac Fibrosis Is Mediated by Overexpression of Angiotensin-Converting Enzyme 2. Hypertension, 2009, 53, 694-700.	1.3	38
30	Transductional and transcriptional targeting of cancer cells using genetically engineered viral vectors. Cancer Letters, 2003, 201, 165-173.	3.2	32
31	Electrical consequences of cardiac myocyte: fibroblast coupling. Biochemical Society Transactions, 2015, 43, 513-518.	1.6	31
32	Extracellular vesicle signalling in atherosclerosis. Cellular Signalling, 2020, 75, 109751.	1.7	27
33	Interactions of adenovirus vectors with blood: implications for intravascular gene therapy applications. Current Opinion in Molecular Therapeutics, 2008, 10, 439-48.	2.8	26
34	Efficient Transduction of Primary Vascular Cells by the Rare Adenovirus Serotype 49 Vector. Human Gene Therapy, 2015, 26, 312-319.	1.4	25
35	Systems biology identifies cytosolic PLA2 as a target in vascular calcification treatment. JCI Insight, 2019, 4, .	2.3	25
36	Simple Methods for Preparing Recombinant Adenoviruses for High-Efficiency Transduction of		24

Vascular Cells. , 1999, 30, 271-284.

STUART A NICKLIN

#	Article	IF	CITATIONS
37	The Orphan Receptor GPR35 Contributes to Angiotensin Il–Induced Hypertension and Cardiac Dysfunction in Mice. American Journal of Hypertension, 2018, 31, 1049-1058.	1.0	24
38	G-Protein-Coupled Receptor 35 Mediates Human Saphenous Vein Vascular Smooth Muscle Cell Migration and Endothelial Cell Proliferation. Journal of Vascular Research, 2015, 52, 383-395.	0.6	23
39	Agonist-induced phosphorylation of orthologues of the orphan receptor GPR35 functions as an activation sensor. Journal of Biological Chemistry, 2022, 298, 101655.	1.6	22
40	The importance of coagulation factors binding to adenovirus: historical perspectives and implications for gene delivery. Expert Opinion on Drug Delivery, 2014, 11, 1795-1813.	2.4	19
41	The relevance of coagulation factor X protection of adenoviruses in human sera. Gene Therapy, 2016, 23, 592-596.	2.3	16
42	Preclinical models of myocardial infarction: from mechanism to translation. British Journal of Pharmacology, 2022, 179, 770-791.	2.7	16
43	The counter regulatory axis of the renin angiotensin system in the brain and ischaemic stroke: Insight from preclinical stroke studies and therapeutic potential. Cellular Signalling, 2020, 76, 109809.	1.7	13
44	A Novel Mechanism of Action for Angiotensin-(1–7) via the Angiotensin Type 1 Receptor. Hypertension, 2016, 68, 1342-1343.	1.3	12
45	Defining a Novel Role for the Coxsackievirus and Adenovirus Receptor in Human Adenovirus Serotype 5 Transduction <i>In Vitro</i> in the Presence of Mouse Serum. Journal of Virology, 2017, 91, .	1.5	12
46	Utilizing proteomics to understand and define hypertension: where are we and where do we go?. Expert Review of Proteomics, 2018, 15, 581-592.	1.3	12
47	Assessing the effects of Ang-(1-7) therapy following transient middle cerebral artery occlusion. Scientific Reports, 2019, 9, 3154.	1.6	11
48	What matters in Cardiovascular Research? Scientific discovery driving clinical delivery. Cardiovascular Research, 2018, 114, 1565-1568.	1.8	10
49	The role of extracellular vesicles in neointima formation post vascular injury. Cellular Signalling, 2020, 76, 109783.	1.7	10
50	Retargeting FX-binding-ablated HAdV-5 to vascular cells by inclusion of the RGD-4C peptide in hexon hypervariable region 7 and the HI loop. Journal of General Virology, 2016, 97, 1911-1916.	1.3	8
51	Adenoviral vectors for cardiovascular gene therapy applications: a clinical and industry perspective. Journal of Molecular Medicine, 2022, 100, 875-901.	1.7	8
52	Human Adenovirus Serotype 5 Is Sensitive to IgM-Independent Neutralization In Vitro and In Vivo. Viruses, 2019, 11, 616.	1.5	7
53	Regulation of connexin 43 by interleukin 1β in adult rat cardiac fibroblasts and effects in an adult rat cardiac myocyte: fibroblast co-culture model. Heliyon, 2020, 6, e03031.	1.4	6
54	Signalling pathways linking cysteine cathepsins to adverse cardiac remodelling. Cellular Signalling, 2020, 76, 109770.	1.7	6

STUART A NICKLIN

#	Article	IF	CITATIONS
55	Inhibition of myocardial cathepsin-L release during reperfusion following myocardial infarction improves cardiac function and reduces infarct size. Cardiovascular Research, 2022, 118, 1535-1547.	1.8	6
56	In Vitro and In Vivo Evaluation of Human Adenovirus Type 49 as a Vector for Therapeutic Applications. Viruses, 2021, 13, 1483.	1.5	4
57	Development of Targeted Viral Vectors for Cardiovascular Gene Therapy. , 2003, 25, 15-49.		2
58	Adenoviral Vectors. , 2010, , 21-36.		0
59	$9\hat{a}\in$ Investigating the counter regulatory renin angiotensin system axis in the stroke prone spontaneously hypertensive rat in ischaemic stroke. , 2018, , .		0