
Concepcion Peiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7032692/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Phase I Clinical Trial of the Treatment of Crohn's Fistula by Adipose Mesenchymal Stem Cell Transplantation. Diseases of the Colon and Rectum, 2005, 48, 1416-1423.	0.7	728
2	High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation. Free Radical Biology and Medicine, 2017, 104, 165-177.	1.3	241
3	Endothelial dysfunction in aged humans is related with oxidative stress and vascular inflammation. Aging Cell, 2009, 8, 226-238.	3.0	188
4	Mechanisms Involved in the Aging-Induced Vascular Dysfunction. Frontiers in Physiology, 2012, 3, 132.	1.3	163
5	Visfatin/Nampt: An Adipokine with Cardiovascular Impact. Mediators of Inflammation, 2013, 2013, 1-15.	1.4	147
6	Extracellular PBEF/NAMPT/visfatin activates pro-inflammatory signalling in human vascular smooth muscle cells through nicotinamide phosphoribosyltransferase activity. Diabetologia, 2009, 52, 2455-2463.	2.9	128
7	Endothelial C-type natriuretic peptide maintains vascular homeostasis. Journal of Clinical Investigation, 2014, 124, 4039-4051.	3.9	125
8	Soluble DPP4 induces inflammation and proliferation of human smooth muscle cells via protease-activated receptor 2. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1613-1621.	1.8	116
9	The interleukin-1 receptor antagonist anakinra improves endothelial dysfunction in streptozotocin-induced diabetic rats. Cardiovascular Diabetology, 2014, 13, 158.	2.7	93
10	IL- $1^{\hat{l}2}$ Inhibition in Cardiovascular Complications Associated to Diabetes Mellitus. Frontiers in Pharmacology, 2017, 8, 363.	1.6	92
11	Inflammation, glucose, and vascular cell damage: the role of the pentose phosphate pathway. Cardiovascular Diabetology, 2016, 15, 82.	2.7	84
12	The angiotensinâ€(1â€7)/Mas receptor axis protects from endothelial cell senescence via klotho and Nrf2 activation. Aging Cell, 2019, 18, e12913.	3.0	80
13	DPP4 and ACE2 in Diabetes and COVID-19: Therapeutic Targets for Cardiovascular Complications?. Frontiers in Pharmacology, 2020, 11, 1161.	1.6	80
14	Differential effects of serotonin reuptake inhibitors on erectile responses, NO-production, and neuronal NO synthase expression in rat corpus cavernosum tissue. British Journal of Pharmacology, 2001, 134, 1190-1194.	2.7	75
15	Endothelial dysfunction through genetic deletion or inhibition of the G protein-coupled receptor Mas: a new target to improve endothelial function. Journal of Hypertension, 2007, 25, 2421-2425.	0.3	74
16	High glucose induces cell death of cultured human aortic smooth muscle cells through the formation of hydrogen peroxide. British Journal of Pharmacology, 2001, 133, 967-974.	2.7	73
17	Visfatin/eNampt induces endothelial dysfunction in vivo: a role for Toll-Like Receptor 4 and NLRP3 inflammasome. Scientific Reports, 2020, 10, 5386.	1.6	69
18	Early and intermediate Amadori glycosylation adducts, oxidative stress, and endothelial dysfunction in the streptozotocin-induced diabetic rats vasculature. Diabetologia, 2003, 46, 556-566.	2.9	66

#	Article	IF	CITATIONS
19	Impairment of Endothelium-Dependent Relaxation by Increasing Percentages of Glycosylated Human Hemoglobin. Hypertension, 1996, 28, 583-592.	1.3	65
20	Endothelial dysfunction and metabolic control in streptozotocin-induced diabetic rats. British Journal of Pharmacology, 1998, 123, 1495-1502.	2.7	63
21	Role of glutathione biosynthesis in endothelial dysfunction and fibrosis. Redox Biology, 2018, 14, 88-99.	3.9	63
22	Inflammation Determines the Pro-Adhesive Properties of High Extracellular D-Glucose in Human Endothelial Cells In Vitro and Rat Microvessels In Vivo. PLoS ONE, 2010, 5, e10091.	1.1	58
23	Substituting Angiotensin-(1-7) to Prevent Lung Damage in SARS-CoV-2 Infection?. Circulation, 2020, 141, 1665-1666.	1.6	57
24	Influence of Endothelium on Cultured Vascular Smooth Muscle Cell Proliferation. Hypertension, 1995, 25, 748-751.	1.3	57
25	Inhibition of vascular endothelial growth factor (VEGF)-induced endothelial proliferation, arterial relaxation, vascular permeability and angiogenesis by dobesilate. European Journal of Pharmacology, 2011, 667, 153-159.	1.7	56
26	Visfatin Impairs Endothelium-Dependent Relaxation in Rat and Human Mesenteric Microvessels through Nicotinamide Phosphoribosyltransferase Activity. PLoS ONE, 2011, 6, e27299.	1.1	56
27	Highly glycated oxyhaemoglobin impairs nitric oxide relaxations in human mesenteric microvessels. Diabetologia, 2000, 43, 83-90.	2.9	52
28	Visfatin as a Novel Mediator Released by Inflamed Human Endothelial Cells. PLoS ONE, 2013, 8, e78283.	1.1	46
29	Soluble dipeptidyl peptidase-4 induces microvascular endothelial dysfunction through proteinase-activated receptor-2 and thromboxane A2 release. Journal of Hypertension, 2016, 34, 869-876.	0.3	40
30	Amadori adducts activate nuclear factor-l̂º B-related proinflammatory genes in cultured human peritoneal mesothelial cells. British Journal of Pharmacology, 2005, 146, 268-279.	2.7	38
31	Dual Effects of Resveratrol on Cell Death and Proliferation of Colon Cancer Cells. Nutrition and Cancer, 2017, 69, 1019-1027.	0.9	38
32	Impairment of nitric oxide-mediated relaxations in anaesthetized autoperfused streptozotocin-induced diabetic rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 1998, 358, 529-537.	1.4	36
33	Evidence for Sodium Azide as an Artifact Mediating the Modulation of Inducible Nitric Oxide Synthase by C-Reactive Protein. Journal of Cardiovascular Pharmacology, 2005, 45, 193-196.	0.8	36
34	Mas receptor is involved in the estrogen-receptor induced nitric oxide-dependent vasorelaxation. Biochemical Pharmacology, 2017, 129, 67-72.	2.0	34
35	The Novel Antioxidant, AC3056 (2,6-di-t-butyl-4-((Dimethyl-4-Methoxyphenylsilyl)Methyloxy)Phenol), Reverses Erectile Dysfunction in Diabetic Rats and Improves NO-mediated Responses in Penile Tissue from Diabetic Men. Journal of Sexual Medicine, 2009, 6, 373-387.	0.3	32
36	The Angiotensin-(1-7)/Mas Axis Counteracts Angiotensin II-Dependent and -Independent Pro-inflammatory Signaling in Human Vascular Smooth Muscle Cells. Frontiers in Pharmacology, 2016, 7, 482.	1.6	32

#	Article	IF	CITATIONS
37	Prevention of endothelial dysfunction in streptozotocin-induced diabetic rats by gliclazide treatment. Journal of Diabetes and Its Complications, 2000, 14, 224-233.	1.2	31
38	Enhancement of S-Nitrosylation in Glycosylated Hemoglobin. Biochemical and Biophysical Research Communications, 2000, 271, 217-221.	1.0	30
39	Treatment with Acarbose May Improve Endothelial Dysfunction in Streptozotocin-Induced Diabetic Rats. Journal of Cardiovascular Pharmacology, 2000, 36, 255-262.	0.8	30
40	Heparan sulfate potentiates leukocyte adhesion on cardiac fibroblast by enhancing Vcam-1 and Icam-1 expression. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 831-842.	1.8	29
41	Visfatin/PBEF/Nampt: A New Cardiovascular Target?. Frontiers in Pharmacology, 2010, 1, 135.	1.6	28
42	Complete blockade of the vasorelaxant effects of angiotensinâ€(1–7) and bradykinin in murine microvessels by antagonists of the receptor Mas. Journal of Physiology, 2013, 591, 2275-2285.	1.3	28
43	Effect of glycaemic control on the vascular nitric oxide system in patients with type 1 diabetes. Journal of Hypertension, 2003, 21, 1137-1143.	0.3	27
44	Changes in the human peritoneal mesothelial cells during aging. Kidney International, 2006, 69, 313-322.	2.6	26
45	The deleterious effect of high concentrations of D-glucose requires pro-inflammatory preconditioning. Journal of Hypertension, 2008, 26, 478-485.	0.3	26
46	Functional vascular renin-angiotensin system in hypertensive transgenic rats for the mouse renin gene Ren-2. General Pharmacology, 1994, 25, 1163-1170.	0.7	25
47	Xanthine oxidase-derived extracellular superoxide anions stimulate activator protein 1 activity and hypertrophy in human vascular smooth muscle via c-Jun N-terminal kinase and p38 mitogen-activated protein kinases. Journal of Hypertension, 2007, 25, 609-618.	0.3	25
48	Glycosylated human oxyhaemoglobin activates nuclear factor-κ B and activator protein-1 in cultured human aortic smooth muscle. British Journal of Pharmacology, 2003, 140, 681-690.	2.7	24
49	Characterization of the Human $\hat{l}\pm1\hat{l}^21$ Soluble Guanylyl Cyclase Promoter. Journal of Biological Chemistry, 2008, 283, 20027-20036.	1.6	23
50	High-cholesterol diet enriched with onion affects endothelium-dependent relaxation and NADPH oxidase activity in mesenteric microvessels from Wistar rats. Nutrition and Metabolism, 2014, 11, 57.	1.3	22
51	Combined Sub-Optimal Doses of Rosuvastatin and Bexarotene Impair Angiotensin II-Induced Arterial Mononuclear Cell Adhesion Through Inhibition of Nox5 Signaling Pathways and Increased RXR/PPARα and RXR/PPARÎ ³ Interactions. Antioxidants and Redox Signaling, 2015, 22, 901-920.	2.5	22
52	Cardiovascular Damage in COVID-19: Therapeutic Approaches Targeting the Renin-Angiotensin-Aldosterone System. International Journal of Molecular Sciences, 2020, 21, 6471.	1.8	21
53	Comparison of the vasoconstrictor responses induced by endothelin and phorbol 12,13-dibutyrate in bovine cerebral arteries. Brain Research, 1992, 599, 186-196.	1.1	20
54	Pharmacological Blockade of NLRP3 Inflammasome/IL-1Î ² -Positive Loop Mitigates Endothelial Cell		19

Senescence and Dysfunction. , 2022, 13, 284.

19

#	Article	IF	CITATIONS
55	Vascular Smooth Muscle Proliferation in Hypertensive Transgenic Rats. Journal of Cardiovascular Pharmacology, 1992, 20, S128-S131.	0.8	17
56	Resolvin D1 and E1 promote resolution of inflammation in rat cardiac fibroblast in vitro. Molecular Biology Reports, 2021, 48, 57-66.	1.0	16
57	Resolvin-D1 attenuation of angiotensin II-induced cardiac inflammation in mice is associated with prevention of cardiac remodeling and hypertension. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166241.	1.8	15
58	Vascular smooth muscle cell hypertrophy induced by glycosylated human oxyhaemoglobin. British Journal of Pharmacology, 1998, 125, 637-644.	2.7	14
59	Visfatin/Nampt induces telomere damage and senescence in human endothelial cells. International Journal of Cardiology, 2014, 175, 573-575.	0.8	14
60	DPP4 Promotes Human Endothelial Cell Senescence and Dysfunction via the PAR2–COX-2–TP Axis and NLRP3 Inflammasome Activation. Hypertension, 2022, 79, 1361-1373.	1.3	14
61	Effects of captopril, losartan, and nifedipine on cell hypertrophy of cultured vascular smooth muscle from hypertensive Ren-2 transgenic rats. British Journal of Pharmacology, 1997, 121, 1438-1444.	2.7	10
62	Endothelial Stimulation of Sodium Pump in Cultured Vascular Smooth Muscle. Hypertension, 1995, 26, 177-185.	1.3	10
63	Correction of glycosylated oxyhemoglobin-induced impairment of endothelium-dependent vasodilatation by gliclazide. Journal of Diabetes and Its Complications, 2000, 14, 207-214.	1.2	9
64	Proâ€inflammatory effects of early nonâ€enzymatic glycated proteins in human mesothelial cells vary with cell donor's age. British Journal of Pharmacology, 2006, 149, 979-987.	2.7	8
65	Nifedipine, losartan and captopril effects on hyperplasia of vascular smooth muscle from Ren-2 transgenic rats. European Journal of Pharmacology, 1997, 324, 257-265.	1.7	7
66	Angiotensin II Mediates Cell Hypertrophy in Vascular Smooth Muscle Cultures from Hypertensive Ren-2 Transgenic Rats by an Amiloride- and Furosemide-Sensitive Mechanism. Biochemical and Biophysical Research Communications, 1997, 240, 367-371.	1.0	7
67	Endogenous Angiotensin II and Cell Hypertrophy in Vascular Smooth Muscle Cultures from Hypertensive Ren-2 Transgenic Rats. Cellular Physiology and Biochemistry, 1998, 8, 106-116.	1.1	7
68	Impairment of endothelial relaxations by glycosylated human oxyhemoglobin depends on the oxidative state of the heme group. General Pharmacology, 1999, 32, 475-481.	0.7	7
69	Genome-Wide Inhibition of Pro-atherogenic Gene Expression by Multi-STAT Targeting Compounds as a Novel Treatment Strategy of CVDs. Frontiers in Immunology, 2018, 9, 2141.	2.2	7
70	Thapsigargin Induces Apoptosis in Cultured Human Aortic Smooth Muscle Cells. Journal of Cardiovascular Pharmacology, 2000, 36, 676-680.	0.8	7
71	Pathways Responsible for Apoptosis Resulting from Amadori-Induced Oxidative and Nitrosative Stress in Human Mesothelial Cells. American Journal of Nephrology, 2011, 34, 104-114.	1.4	6
72	Effects of Indomethacin and Iloprost on Contraction of the Afferent Arterioles by Endothelin-1 in Juxtamedullary Nephron Preparations from Normotensive Wistar-Kyoto and Spontaneously Hypertensive Rats. Journal of Cardiovascular Pharmacology, 1996, 28, 809-816.	0.8	6

#	Article	IF	CITATIONS
73	NLRP3 Inflammasome in Vascular Disease: A Recurrent Villain to Combat Pharmacologically. Antioxidants, 2022, 11, 269.	2.2	6
74	Resolvin E1 attenuates doxorubicin-induced endothelial senescence by modulating NLRP3 inflammasome activation. Biochemical Pharmacology, 2022, 201, 115078.	2.0	6
75	Phorbol Dibutyrate Induces Contractions in Bovine Cerebral Arteries by an Extracellular Calcium-independent Mechanism. Journal of Pharmacy and Pharmacology, 2011, 45, 274-279.	1.2	3
76	Polyphenols Attenuate Highly-Glycosylated Haemoglobin-Induced Damage in Human Peritoneal Mesothelial Cells. Antioxidants, 2020, 9, 572.	2.2	3
77	Resolvin D1 reduces expression and secretion of cytokines and monocyte adhesion triggered by Angiotensin II, in rat cardiac fibroblasts. Biomedicine and Pharmacotherapy, 2021, 141, 111947.	2.5	3
78	Characterization of endothelium-dependent relaxations in the mesenteric vasculature: a comparative study with potential pathophysiological relevance. Journal of Pediatric Surgery, 2012, 47, 2044-2049.	0.8	2
79	Obesity, A Condition That Mimics Premature Aging. , 2021, , 501-521.		2
80	Pharmacological interference of vascular smooth muscle cell hypertrophy induced by glycosylated human oxyhaemoglobin. European Journal of Pharmacology, 1999, 386, 317-321.	1.7	1
81	Disfunción endotelial asociada al envejecimiento vascular humano. ClÃnica E Investigación En Arteriosclerosis, 2011, 23, 135-139.	0.4	0
82	The adipokine visfatin produces murine endothelial dysfunction in vivo and ex vivo: opportunities for pharmacological interventions. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR10-3.	0.0	0