
Ning Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7032290/publications.pdf Version: 2024-02-01

NINC SUN

#	Article	IF	CITATIONS
1	Cooperative BrÃ,nsted-Lewis acid sites created by phosphotungstic acid encapsulated metal–organic frameworks for selective glucose conversion to 5-hydroxymethylfurfural. Fuel, 2022, 310, 122459.	6.4	28
2	Scale-Up of the Ionic Liquid-Based Biomass Conversion Processes. , 2022, , 1-8.		0
3	Recovery of low molecular weight compounds from alkaline pretreatment liquor <i>via</i> membrane separations. Green Chemistry, 2022, 24, 3152-3166.	9.0	8
4	Fractionation of Lignin Streams Using Tangential Flow Filtration. Industrial & Engineering Chemistry Research, 2022, 61, 4407-4417.	3.7	4
5	Deconstruction of Woody Biomass via Protic and Aprotic Ionic Liquid Pretreatment for Ethanol Production. ACS Sustainable Chemistry and Engineering, 2021, 9, 4422-4432.	6.7	34
6	High-Efficiency Conversion of Ionic Liquid-Pretreated Woody Biomass to Ethanol at the Pilot Scale. ACS Sustainable Chemistry and Engineering, 2021, 9, 4042-4053.	6.7	40
7	Genomics Characterization of an Engineered Corynebacterium glutamicum in Bioreactor Cultivation Under Ionic Liquid Stress. Frontiers in Bioengineering and Biotechnology, 2021, 9, 766674.	4.1	6
8	Conversion of Paper and Food-rich Municipal Solid Waste Streams to Ethanol through Bioprocessing. ACS Sustainable Chemistry and Engineering, 2020, 8, 16889-16896.	6.7	5
9	Characterizing Variability in Lignocellulosic Biomass: A Review. ACS Sustainable Chemistry and Engineering, 2020, 8, 8059-8085.	6.7	55
10	Statistical design of experiments for production and purification of vanillin and aminophenols from commercial lignin . Green Chemistry, 2020, 22, 3917-3926.	9.0	23
11	Theoretical study on the microscopic mechanism of lignin solubilization in Keggin-type polyoxometalate ionic liquids. Physical Chemistry Chemical Physics, 2020, 22, 2878-2886.	2.8	20
12	Scale-up of biomass conversion using 1-ethyl-3-methylimidazolium acetateÂas the solvent. Green Energy and Environment, 2019, 4, 432-438.	8.7	36
13	Enhanced corn-stover fermentation for biogas production by NaOH pretreatment with CaO additive and ultrasound. Journal of Cleaner Production, 2019, 238, 117813.	9.3	52
14	Methyl Ketones from Municipal Solid Waste Blends by Oneâ€Pot Ionicâ€Liquid Pretreatment, Saccharification, and Fermentation. ChemSusChem, 2019, 12, 4313-4322.	6.8	14
15	Upgrading of Postconsumer Absorbent Hygiene Products for Bioethanol Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 3589-3595.	6.7	5
16	Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with <i>Rhodosporidium toruloides</i> to produce advanced biofuels. Green Chemistry, 2018, 20, 2870-2879.	9.0	77
17	Scale-up and process integration of sugar production by acidolysis of municipal solid waste/corn stover blends in ionic liquids. Biotechnology for Biofuels, 2017, 10, 13.	6.2	24
18	Conversion of cellulose rich municipal solid waste blends using ionic liquids: feedstock convertibility and process scale-up. RSC Advances, 2017, 7, 36585-36593.	3.6	16

Ning Sun

#	Article	IF	CITATIONS
19	Xylose induces cellulase production in Thermoascus aurantiacus. Biotechnology for Biofuels, 2017, 10, 271.	6.2	24
20	Development of an E. coli strain for one-pot biofuel production from ionic liquid pretreated cellulose and switchgrass. Green Chemistry, 2016, 18, 4189-4197.	9.0	52
21	Activation of lignocellulosic biomass for higher sugar yields using aqueous ionic liquid at low severity process conditions. Biotechnology for Biofuels, 2016, 9, 160.	6.2	44
22	Impact of Pretreatment Technologies on Saccharification and Isopentenol Fermentation of Mixed Lignocellulosic Feedstocks. Bioenergy Research, 2015, 8, 1004-1013.	3.9	40
23	Blending municipal solid waste with corn stover for sugar production using ionic liquid process. Bioresource Technology, 2015, 186, 200-206.	9.6	28
24	Understanding pretreatment efficacy of four cholinium and imidazolium ionic liquids by chemistry and computation. Green Chemistry, 2014, 16, 2546-2557.	9.0	138
25	Production and extraction of sugars from switchgrass hydrolyzed in ionic liquids. Biotechnology for Biofuels, 2013, 6, 39.	6.2	62
26	Acid enhanced ionic liquid pretreatment of biomass. Green Chemistry, 2013, 15, 1264.	9.0	40
27	Reinforced magnetic cellulose fiber from ionic liquid solution. Nanomaterials and Energy, 2012, 1, 225-236.	0.2	15
28	A Thermophilic Ionic Liquid-Tolerant Cellulase Cocktail for the Production of Cellulosic Biofuels. PLoS ONE, 2012, 7, e37010.	2.5	98
29	Composite fibers spun directly from solutions of raw lignocellulosic biomass dissolved in ionic liquids. Green Chemistry, 2011, 13, 1158.	9.0	64
30	Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chemistry, 2011, 13, 2038.	9.0	203
31	Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass?. Chemical Communications, 2011, 47, 1405-1421.	4.1	391
32	Use of Polyoxometalate Catalysts in Ionic Liquids to Enhance the Dissolution and Delignification of Woody Biomass. ChemSusChem, 2011, 4, 65-73.	6.8	71
33	Properties of Cellulose/TiO ₂ Fibers Processed from Ionic Liquids. ACS Symposium Series, 2010, , 261-274.	0.5	8
34	Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chemistry, 2010, 12, 968.	9.0	364
35	Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chemistry, 2009, 11, 646.	9.0	906
36	Biphasic liquid mixtures of ionic liquids and polyethylene glycols. Physical Chemistry Chemical Physics, 2009, 11, 10916.	2.8	69

Ning Sun

#	Article	IF	CITATIONS
37	Magnetite-embedded cellulose fibers prepared from ionic liquid. Journal of Materials Chemistry, 2008, 18, 283-290.	6.7	124
38	Physical Properties of Ionic Liquids: Database and Evaluation. Journal of Physical and Chemical Reference Data, 2006, 35, 1475-1517.	4.2	1,045
39	Prediction of the melting points for two kinds of room temperature ionic liquids. Fluid Phase Equilibria, 2006, 246, 137-142.	2.5	73
40	Periodicity and map for discovery of new ionic liquids. Science in China Series B: Chemistry, 2006, 49, 103-115.	0.8	9