List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7032127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA-guided DNA interference by a prokaryotic Argonaute. Nature, 2014, 507, 258-261.	13.7	373
2	Thermus thermophilus as biological model. Extremophiles, 2009, 13, 213-231.	0.9	145
3	Coating of Soluble and Immobilized Enzymes with Ionic Polymers: Full Stabilization of the Quaternary Structure of Multimeric Enzymes. Biomacromolecules, 2009, 10, 742-747.	2.6	111
4	A conserved motif in S-layer proteins is involved in peptidoglycan binding in Thermus thermophilus. Journal of Bacteriology, 1996, 178, 4765-4772.	1.0	98
5	A High-Transformation-Efficiency Cloning Vector for Thermus thermophilus. Plasmid, 1999, 42, 241-245.	0.4	94
6	Insertional mutagenesis in the extreme thermophilic eubacteria Thermus thermophilus HB8. Molecular Microbiology, 1992, 6, 1555-1564.	1.2	77
7	Binding to pyruvylated compounds as an ancestral mechanism to anchor the outer envelope in primitive bacteria. Molecular Microbiology, 2004, 52, 677-690.	1.2	75
8	A thermophilic nitrate reductase is responsible for the strain specific anaerobic growth of Thermus thermophilus HB8. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1396, 215-227.	2.4	73
9	Sequence of the S-layer gene of Thermus thermophilus HB8 and functionality of its promoter in Escherichia coli. Journal of Bacteriology, 1992, 174, 7458-7462.	1.0	70
10	Anaerobic Growth, a Property Horizontally Transferred by an Hfr-Like Mechanism among Extreme Thermophiles. Journal of Bacteriology, 1998, 180, 3137-3143.	1.0	69
11	Secretion and assembly of regular surface structures in Gram-negative bacteria. FEMS Microbiology Reviews, 2000, 24, 21-44.	3.9	65
12	Modulation of the distribution of small proteins within porous matrixes by smart-control of the immobilization rate. Journal of Biotechnology, 2011, 155, 412-420.	1.9	61
13	Development of Thermus-Escherichia shuttle vectors and their use for expression of the Clostridium thermocellum celA gene in Thermus thermophilus. Journal of Bacteriology, 1992, 174, 6424-6431.	1.0	60
14	pH-dependent conformational switch activates the inhibitor of transcription elongation. EMBO Journal, 2006, 25, 2131-2141.	3.5	58
15	Penicillin-binding protein 3 of Listeria monocytogenes as the primary lethal target for beta-lactams. Antimicrobial Agents and Chemotherapy, 1990, 34, 539-542.	1.4	56
16	IV. Molecular biology of S-layers. FEMS Microbiology Reviews, 1997, 20, 47-98.	3.9	56
17	Divergent Substrate-Binding Mechanisms Reveal an Evolutionary Specialization of Eukaryotic Prefoldin Compared to Its Archaeal Counterpart. Structure, 2007, 15, 101-110.	1.6	55
18	Secretion and assembly of regular surface structures in Gram-negative bacteria. FEMS Microbiology Reviews. 2000. 24. 21-44.	3.9	53

#	Article	IF	CITATIONS
19	Purification and stabilization of a glutamate dehygrogenase from Thermus thermophilus via oriented multisubunit plus multipoint covalent immobilization. Journal of Molecular Catalysis B: Enzymatic, 2009, 58, 158-163.	1.8	53
20	Expression and use of superfolder green fluorescent protein at high temperatures <i>in vivo</i> : a tool to study extreme thermophile biology. Environmental Microbiology, 2008, 10, 605-613.	1.8	51
21	Design of an immobilized preparation of catalase from Thermus thermophilus to be used in a wide range of conditions Enzyme and Microbial Technology, 2003, 33, 278-285.	1.6	50
22	Sequence of the hyperplastic genome of the naturally competent Thermus scotoductus SA-01. BMC Genomics, 2011, 12, 577.	1.2	49
23	Development of a gene expression vector for Thermus thermophilus based on the promoter of the respiratory nitrate reductase. Plasmid, 2003, 49, 2-8.	0.4	47
24	Selective oxidation of glycerol to 1,3-dihydroxyacetone by covalently immobilized glycerol dehydrogenases with higher stability and lower product inhibition. Bioresource Technology, 2014, 170, 445-453.	4.8	47
25	Export ofThermus thermophilusalkaline phosphatase via the twin-arginine translocation pathway inEscherichia coli. FEBS Letters, 2001, 506, 103-107.	1.3	46
26	Thermus thermophilus as a Cell Factory for the Production of a Thermophilic Mn-Dependent Catalase Which Fails To Be Synthesized in an Active Form in Escherichia coli. Applied and Environmental Microbiology, 2004, 70, 3839-3844.	1.4	46
27	Enhancement of DNA, cDNA synthesis and fidelity at high temperatures by a dimeric single-stranded DNA-binding protein. Nucleic Acids Research, 2003, 31, 6473-6480.	6.5	45
28	New biotechnological perspectives of a NADH oxidase variant from Thermus thermophilus HB27 as NAD+-recycling enzyme. BMC Biotechnology, 2011, 11, 101.	1.7	45
29	Immobilization–stabilization of a new recombinant glutamate dehydrogenase from Thermus thermophilus. Applied Microbiology and Biotechnology, 2008, 80, 49-58.	1.7	42
30	Characterization and further stabilization of a new anti-prelog specific alcohol dehydrogenase from Thermus thermophilus HB27 for asymmetric reduction of carbonyl compounds. Bioresource Technology, 2012, 103, 343-350.	4.8	40
31	Control of the respiratory metabolism of Thermus thermophilus by the nitrate respiration conjugative element NCE. Molecular Microbiology, 2007, 64, 630-646.	1.2	39
32	The adsorption of multimeric enzymes on very lowly activated supports involves more enzyme subunits: Stabilization of a glutamate dehydrogenase from Thermus thermophilus by immobilization on heterofunctional supports. Enzyme and Microbial Technology, 2009, 44, 139-144.	1.6	39
33	S-layer protein from Thermus thermophilus HB8 assembles into porin-like structures. Molecular Microbiology, 1993, 9, 65-75.	1.2	38
34	Surface proteins and a novel transcription factor regulate the expression of the Sâ€layer gene in Thermus thermophilus HB8. Molecular Microbiology, 1997, 24, 61-72.	1.2	37
35	The transjugation machinery of Thermus thermophilus: Identification of TdtA, an ATPase involved in DNA donation. PLoS Genetics, 2017, 13, e1006669.	1.5	37
36	Cloning, functional expression, biochemical characterization, and structural analysis of a haloalkane dehalogenase from Plesiocystis pacifica SIR-1. Applied Microbiology and Biotechnology, 2011, 91, 1049-1060.	1.7	36

#	Article	IF	CITATIONS
37	Transferable Denitrification Capability of Thermus thermophilus. Applied and Environmental Microbiology, 2014, 80, 19-28.	1.4	36
38	Characterization of a plasmid replicative origin from an extreme thermophile. FEMS Microbiology Letters, 1998, 165, 51-57.	0.7	35
39	An activity-independent selection system of thermostable protein variants. Nature Methods, 2007, 4, 919-921.	9.0	35
40	Penicillin-binding proteins in the cyanelles of Cyanophora paradoxa , a eukaryotic photoautotroph sensitive to β-lactam antibiotics. FEBS Letters, 1987, 224, 401-405.	1.3	34
41	Horizontal transference of S-layer genes within Thermus thermophilus. Journal of Bacteriology, 1995, 177, 5460-5466.	1.0	34
42	Efficient and selective enzymatic synthesis of N-acetyl-lactosamine in ionic liquid: a rational explanation. RSC Advances, 2012, 2, 6306.	1.7	34
43	The role of the nitrate respiration element of <i>Thermus thermophilus</i> in the control and activity of the denitrification apparatus. Environmental Microbiology, 2008, 10, 522-533.	1.8	32
44	Lateral Transfer of the Denitrification Pathway Genes among <i>Thermus thermophilus</i> Strains. Applied and Environmental Microbiology, 2011, 77, 1352-1358.	1.4	32
45	Identification of a crystalline surface layer on the cell envelope of the thermophilic eubacterium Thermus thermophilus. FEMS Microbiology Letters, 1988, 51, 225-230.	0.7	30
46	Ca2+-stabilized oligomeric protein complexes are major components of the cell envelope of "Thermus thermophilus" HB8. Journal of Bacteriology, 1988, 170, 2441-2447.	1.0	30
47	glmS of Thermus thermophilus HB8: an essential gene for cell-wall synthesis identified immediately upstream of the S-layer gene. Molecular Microbiology, 1995, 17, 1-12.	1.2	30
48	The periplasmic space in Thermus thermophilus : evidence from a regulation-defective S-layer mutant overexpressing an alkaline phosphatase. Extremophiles, 2002, 6, 225-232.	0.9	29
49	High-Level Overproduction of His-Tagged Tth DNA Polymerase in Thermus thermophilus. Applied and Environmental Microbiology, 2005, 71, 591-593.	1.4	29
50	Promiscuous enantioselective (â^')-γ-lactamase activity in the Pseudomonas fluorescens esterase I. Organic and Biomolecular Chemistry, 2012, 10, 3388.	1.5	29
51	Thermus thermophilus Nucleoside Phosphorylases Active in the Synthesis of Nucleoside Analogues. Applied and Environmental Microbiology, 2012, 78, 3128-3135.	1.4	29
52	Contribution of vesicle-protected extracellular DNA to horizontal gene transfer in Thermus spp. International Microbiology, 2015, 18, 177-87.	1.1	29
53	A New Type of NADH Dehydrogenase Specific for Nitrate Respiration in the Extreme Thermophile Thermus thermophilus. Journal of Biological Chemistry, 2004, 279, 45369-45378.	1.6	28
54	Analysis of validamycin as a potential antifungal compound against Candida albicans. International Microbiology, 2013, 16, 217-25.	1.1	28

#	Article	IF	CITATIONS
55	Cloning and expression in Escherichia coli of the structural gene coding for the monomeric protein of the S layer of Thermus thermophilus HB8. Journal of Bacteriology, 1991, 173, 5346-5351.	1.0	27
56	Two Nitrate/Nitrite Transporters Are Encoded within the Mobilizable Plasmid for Nitrate Respiration of Thermus thermophilus HB8. Journal of Bacteriology, 2000, 182, 2179-2183.	1.0	27
57	Purification, immobilization and stabilization of a highly enantioselective alcohol dehydrogenase from Thermus thermophilus HB27 cloned in E. coli. Process Biochemistry, 2009, 44, 1004-1012.	1.8	27
58	Highly efficient enzymatic synthesis of Galβ-(1→3)-GalNAc and Galβ-(1→3)-GlcNAc in ionic liquids. Tetrahedron, 2013, 69, 4973-4978.	1.0	26
59	Characterization of a promiscuous cadmium and arsenic resistance mechanism in Thermus thermophilus HB27 and potential application of a novel bioreporter system. Microbial Cell Factories, 2018, 17, 78.	1.9	26
60	Purification, composition and Ca2+-binding properties of the monomeric protein of the S-layer ofThermus thermophilus. FEBS Letters, 1988, 235, 117-121.	1.3	25
61	A cytochromecencoded by thenaroperon is required for the synthesis of active respiratory nitrate reductase inThermus thermophilus. FEBS Letters, 2002, 523, 99-102.	1.3	25
62	IV. Molecular biology of S-layers. FEMS Microbiology Reviews, 1997, 20, 47-98.	3.9	24
63	Noncanonical Cell-to-Cell DNA Transfer in Thermus spp. Is Insensitive to Argonaute-Mediated Interference. Journal of Bacteriology, 2015, 197, 138-146.	1.0	24
64	Increased Enantioselectivity by Engineering Bottleneck Mutants in an Esterase from <i>Pseudomonas fluorescens</i> . ChemBioChem, 2009, 10, 2920-2923.	1.3	22
65	A novel thermostable protein-tag: optimization of the Sulfolobus solfataricus DNA- alkyl-transferase by protein engineering. Extremophiles, 2016, 20, 1-13.	0.9	21
66	An ArsR/SmtB family member regulates arsenic resistance genes unusually arranged in <i>Thermus thermophilus</i> HB27. Microbial Biotechnology, 2017, 10, 1690-1701.	2.0	21
67	High-level overproduction of Thermus enzymes in Streptomyces lividans. Applied Microbiology and Biotechnology, 2008, 79, 1001-1008.	1.7	20
68	A cytochrome <i>c</i> containing nitrate reductase plays a role in electron transport for denitrification in <i>Thermus thermophilus</i> without involvement of the <i>bc</i> respiratory complex. Molecular Microbiology, 2008, 70, 507-518.	1.2	20
69	Membrane-Associated Maturation of the Heterotetrameric Nitrate Reductase of Thermus thermophilus. Journal of Bacteriology, 2005, 187, 3990-3996.	1.0	19
70	Interaction of Nocardicin A with the Penicillin-Binding Proteins of Escherichia coli in Intact Cells and in Purified Cell Envelopes. FEBS Journal, 1982, 126, 155-159.	0.2	18
71	Beta-lactam-fosfomycin antagonism involving modification of penicillin-binding protein 3 in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 1990, 34, 2093-2096.	1.4	18
72	Subcellular distribution of enzymes involved in the biosynthesis of cyanelle murein in the protistCyanophora paradoxa. FEBS Letters, 1991, 284, 169-172.	1.3	18

#	Article	IF	CITATIONS
73	Characterization of a plasmid replicative origin from an extreme thermophile. FEMS Microbiology Letters, 1998, 165, 51-57.	0.7	18
74	The residue 179 is involved in product specificity of the Bacillus circulans DF 9R cyclodextrin glycosyltransferase. Applied Microbiology and Biotechnology, 2012, 94, 123-130.	1.7	18
75	Biobased, Internally pH-Sensitive Materials: Immobilized Yellow Fluorescent Protein as an Optical Sensor for Spatiotemporal Mapping of pH Inside Porous Matrices. ACS Applied Materials & Interfaces, 2018, 10, 6858-6868.	4.0	18
76	Self-sufficient asymmetric reduction of β-ketoesters catalysed by a novel and robust thermophilic alcohol dehydrogenase co-immobilised with NADH. Catalysis Science and Technology, 2021, 11, 3217-3230.	2.1	18
77	slpM, a gene coding for an "S-layer-like array" overexpressed in S-layer mutants of Thermus thermophilus HB8. Journal of Bacteriology, 1996, 178, 357-365.	1.0	17
78	Temperature-Dependent Hypermutational Phenotype in recA Mutants of Thermus thermophilus HB27. Journal of Bacteriology, 2003, 185, 4901-4907.	1.0	17
79	Into the Thermus Mobilome: Presence, Diversity and Recent Activities of Insertion Sequences Across Thermus spp Microorganisms, 2019, 7, 25.	1.6	17
80	Biochemical and Structural Characterization of a novel thermophilic esterase EstD11 provide catalytic insights for the HSL family. Computational and Structural Biotechnology Journal, 2021, 19, 1214-1232.	1.9	17
81	Induction of cell lysis in Escherichia coli: cooperative effect of nocardicin A and mecillinam. Antimicrobial Agents and Chemotherapy, 1982, 21, 195-200.	1.4	16
82	Characterization ofL-Glutamine:D-Fructose-6-phosphate Amidotransferase from an Extreme ThermophileThermus thermophilusHB8. Archives of Biochemistry and Biophysics, 1997, 337, 129-136.	1.4	15
83	Biochemical and regulatory properties of a respiratory island encoded by a conjugative plasmid in the extreme thermophile Thermus thermophilus. Biochemical Society Transactions, 2006, 34, 97-100.	1.6	15
84	Screening of strains and recombinant enzymes from Thermus thermophilus for their use in disaccharide synthesis. Journal of Molecular Catalysis B: Enzymatic, 2012, 74, 162-169.	1.8	15
85	Characterization of the nitric oxide reductase from <i>Thermus thermophilus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12613-12618.	3.3	15
86	A new family of nitrate/nitrite transporters involved in denitrification. International Microbiology, 2019, 22, 19-28.	1.1	15
87	Complete Genome Sequence of Mycolicibacterium hassiacum DSM 44199. Microbiology Resource Announcements, 2019, 8, .	0.3	15
88	Three-Dimensional Structure of Different Aggregates Built Up by the S-Layer Protein of Thermus thermophilus. Journal of Structural Biology, 1994, 113, 164-176.	1.3	14
89	Multiple Regulatory Mechanisms Act on the 5′ Untranslated Region of the S-Layer Gene from Thermus thermophilus HB8. Journal of Bacteriology, 2001, 183, 1491-1494.	1.0	14
90	Use of a Dominant rpsL Allele Conferring Streptomycin Dependence for Positive and Negative Selection in Thermus thermophilus. Applied and Environmental Microbiology, 2007, 73, 5138-5145.	1.4	14

#	Article	IF	CITATIONS
91	Partial and complete denitrification in Thermus thermophilus: lessons from genome drafts. Biochemical Society Transactions, 2011, 39, 249-253.	1.6	14
92	Thermostability Engineering of a Class II Pyruvate Aldolase from <i>Escherichia coli</i> by <i>in Vivo</i> Folding Interference. ACS Sustainable Chemistry and Engineering, 2021, 9, 5430-5436.	3.2	14
93	Unconventional lateral gene transfer in extreme thermophilic bacteria. International Microbiology, 2011, 14, 187-99.	1.1	14
94	Efficient trans-cleavage by the Schistosoma mansoni SMalpha1 hammerhead ribozyme in the extreme thermophile Thermus thermophilus. Nucleic Acids Research, 2002, 30, 1606-1612.	6.5	13
95	DNA interference by a mesophilic Argonaute protein, CbcAgo. F1000Research, 2019, 8, 321.	0.8	13
96	Horizontal Gene Transfer in Thermus spp Current Issues in Molecular Biology, 2018, 29, 23-36.	1.0	13
97	Binding of 125I-labeled .BETAlactam antibiotics to the penicillin binding proteins of Escherichia coli Journal of Antibiotics, 1984, 37, 389-393.	1.0	12
98	Functional expression of a penicillin acylase from the extreme thermophile Thermus thermophilus HB27 in Escherichia coli. Microbial Cell Factories, 2012, 11, 105.	1.9	12
99	Optimised N-acetyl-d-lactosamine synthesis using Thermus thermophilus β-galactosidase in bio-solvents. Tetrahedron, 2013, 69, 1148-1152.	1.0	12
100	Engineering the Substrate Specificity of a Thermophilic Penicillin Acylase from Thermus thermophilus. Applied and Environmental Microbiology, 2013, 79, 1555-1562.	1.4	12
101	Stabilization of Enzymes by Using Thermophiles. Methods in Molecular Biology, 2017, 1645, 297-312.	0.4	12
102	Use of an Antisense RNA Strategy To Investigate the Functional Significance of Mn-Catalase in the Extreme Thermophile Thermus thermophilus. Journal of Bacteriology, 2004, 186, 7804-7806.	1.0	11
103	The β-barrel assembly machinery (BAM) is required for the assembly of a primitive S-layer protein in the ancient outer membrane of Thermus thermophilus. Extremophiles, 2012, 16, 853-861.	0.9	10
104	A Modular Vector Toolkit with a Tailored Set of Thermosensors To Regulate Gene Expression in <i>Thermus thermophilus</i> . ACS Omega, 2019, 4, 14626-14632.	1.6	10
105	Thermus thermophilus Strains Active in Purine Nucleoside Synthesis. Molecules, 2009, 14, 1279-1287.	1.7	9
106	Hypoxanthine-Guanine Phosphoribosyltransferase/adenylate Kinase From Zobellia galactanivorans: A Bifunctional Catalyst for the Synthesis of Nucleoside-5â€2-Mono-, Di- and Triphosphates. Frontiers in Bioengineering and Biotechnology, 2020, 8, 677.	2.0	9
107	Thermophile. , 2011, , 1666-1667.		9
108	DNA interference by a mesophilic Argonaute protein, CbcAgo. F1000Research, 0, 8, 321.	0.8	9

#	Article	IF	CITATIONS
109	Purification of a Catalase from Thermus thermophilus via IMAC Chromatography: Effect of the Support. Biotechnology Progress, 2004, 20, 1578-1582.	1.3	8
110	Localized synthesis of the outer envelope from Thermus thermophilus. Extremophiles, 2012, 16, 267-275.	0.9	8
111	Hydrolysis and oxidation of racemic esters into prochiral ketones catalyzed by a consortium of immobilized enzymes. Biochemical Engineering Journal, 2016, 112, 136-142.	1.8	8
112	Thermostability enhancement of the Pseudomonas fluorescens esterase I by in vivo folding selection in Thermus thermophilus. Biotechnology and Bioengineering, 2020, 117, 30-38.	1.7	8
113	Parallel Pathways for Nitrite Reduction during Anaerobic Growth in Thermus thermophilus. Journal of Bacteriology, 2014, 196, 1350-1358.	1.0	7
114	A single mutation in cyclodextrin glycosyltransferase from Paenibacillus barengoltzii changes cyclodextrin and maltooligosaccharides production. Protein Engineering, Design and Selection, 2018, 31, 399-407.	1.0	6
115	A Third Subunit in Ancestral Cytochrome <i>c</i> -Dependent Nitric Oxide Reductases. Applied and Environmental Microbiology, 2014, 80, 4871-4878.	1.4	5
116	Nitrate Respiration in Thermus thermophilus NAR1: from Horizontal Gene Transfer to Internal Evolution. Genes, 2020, 11, 1308.	1.0	5
117	Penicillin binding proteins in Listeria monocytogenes. Acta Microbiologica Hungarica, 1990, 37, 227-31.	0.2	5
118	Role of Archaeal HerA Protein in the Biology of the Bacterium Thermus thermophilus. Genes, 2017, 8, 130.	1.0	4
119	Hierarchical Control of Nitrite Respiration by Transcription Factors Encoded within Mobile Gene Clusters of Thermus thermophilus. Genes, 2017, 8, 361.	1.0	4
120	ICETh1 and ICETh2, two interdependent mobile genetic elements in Thermus thermophilus transjugation. Environmental Microbiology, 2020, 22, 158-169.	1.8	4
121	Investigations on Structure and Biosynthesis of Cyanelle Murein from Cyanophora paradoxa. , 1993, , 47-55.		4
122	Variability in the posttranslational processing of penicillin-binding protein 1b among different strains of Escherichia coli. Biochemistry and Cell Biology, 1987, 65, 62-67.	0.9	3
123	Differential domain accessibility to monoclonal antibodies in three different morphological assemblies built up by the S-layer protein of Thermus thermophilus HB8. Journal of Bacteriology, 1996, 178, 3654-3657.	1.0	3
124	The role of conserved proteins DrpA and DrpB in nitrate respiration of <i>Thermus thermophilus</i> . Environmental Microbiology, 2018, 20, 3851-3861.	1.8	3
125	The <i>Thermus thermophilus</i> DEAD-box protein Hera is a general RNA binding protein and plays a key role in tRNA metabolism. Rna, 2020, 26, 1557-1574.	1.6	3
126	A thermostable DNA primaseâ€polymerase from a mobile genetic element involved in defence against environmental DNA. Environmental Microbiology, 2020, 22, 4647-4657.	1.8	3

#	Article	IF	CITATIONS
127	Effect of Protein Synthesis Inhibition on the Induction of Cell Lysis in <i>Escherichia coli</i> by Mecillinam plus Nocardicin A. Antimicrobial Agents and Chemotherapy, 1982, 22, 1070-1072.	1.4	2
128	Homogeneous incorporation of secondary cell wall polysaccharides to the cell wall of Thermus thermophilus HB27. Extremophiles, 2012, 16, 485-495.	0.9	2
129	A brief reflection of International Microbiology's history and future direction. International Microbiology, 2018, 21, 1-2.	1.1	2
130	Functional Characterization and Structural Analysis of NADH Oxidase Mutants from Thermus thermophilus HB27: Role of Residues 166, 174, and 194 in the Catalytic Properties and Thermostability. Microorganisms, 2019, 7, 515.	1.6	2
131	Biotechnological Applications of Thermus thermophilus as Host. Current Biotechnology, 2013, 2, 304-312.	0.2	2
132	Diversity among clinical isolates of penicillin-resistant Streptococcus mitis: indication for a PBP1-dependent way to reach high levels of penicillin resistance. International Microbiology, 2001, 4, 217-222.	1.1	1
133	Are <i>inÂvivo</i> selections on the path to extinction?. Microbial Biotechnology, 2017, 10, 46-49.	2.0	1
134	Cell-to-cell DNA Transfer among Thermus Species. Bio-protocol, 2016, 6, .	0.2	1
135	Methods to Identify and Analyze Vesicle-Protected DNA Transfer. Methods in Molecular Biology, 2020, 2075, 209-221.	0.4	1
136	Intraparticle pH Sensing Within Immobilized Enzymes: Immobilized Yellow Fluorescent Protein as Optical Sensor for Spatiotemporal Mapping of pH Inside Porous Particles. Methods in Molecular Biology, 2020, 2100, 319-333.	0.4	1
137	Integrative and Conjugative Element ICETh1 Functions as a Pangenomic DNA Capture Module in Thermus thermophilus. Microorganisms, 2020, 8, 2051.	1.6	1
138	Alternative Ways to Exchange DNA: Unconventional Conjugation Among Bacteria. , 2019, , 77-96.		0
139	Hyperthermophile. , 2011, , 796-799.		0
140	Hyperthermophile. , 2014, , 1-5.		0
141	Transformation of Thermus Species by Natural Competence. Bio-protocol, 2016, 6, .	0.2	0
142	Year's comments for 2013. International Microbiology, 2013, 16, 211-5.	1.1	0