Colin Sumners

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7031948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brain Microglial Cytokines in Neurogenic Hypertension. Hypertension, 2010, 56, 297-303.	2.7	336
2	Angiotensin II receptor subtypes are coupled with distinct signal-transduction mechanisms in neurons and astrocytes from rat brain Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 7567-7571.	7.1	229
3	Angiotensin II in central nervous system physiology. Regulatory Peptides, 1998, 78, 1-11.	1.9	208
4	Chronic Ethanol Exposure Potentiates NMDA Excitotoxicity in Cerebral Cortical Neurons. Journal of Neurochemistry, 1993, 60, 1578-1581.	3.9	201
5	Cerebroprotection by angiotensin-(1-7) in endothelin-1-induced ischaemic stroke. Experimental Physiology, 2011, 96, 1084-1096.	2.0	169
6	Mitogen-activated Protein Kinases in Rat Brain Neuronal Cultures Are Activated by Angiotensin II Type 1 Receptors and Inhibited by Angiotensin II Type 2 Receptors. Journal of Biological Chemistry, 1996, 271, 15635-15641.	3.4	166
7	Therapeutic Implications of the Vasoprotective Axis of the Renin-Angiotensin System in Cardiovascular Diseases. Hypertension, 2010, 55, 207-213.	2.7	159
8	The angiotensin II type 2 receptor: an enigma with multiple variations. American Journal of Physiology - Endocrinology and Metabolism, 2000, 278, E357-E374.	3.5	136
9	Chronic Ethanol Increases <i>N</i> -Methyl-d-Aspartate-Stimulated Nitric Oxide Formation but Not Receptor Density in Cultured Cortical Neurons. Molecular Pharmacology, 1997, 51, 733-740.	2.3	130
10	Cytokineâ€stimulated inducible nitric oxide synthase expression in astroglia: Role of Erk mitogenâ€activated protein kinase and NFâ€₽B. Glia, 2003, 41, 152-160.	4.9	120
11	Ethanol Inhibits NMDA Receptor-Mediated Excitotoxicity in Rat Primary Neuronal Cultures. Alcoholism: Clinical and Experimental Research, 1993, 17, 54-60.	2.4	114
12	Mineralocorticoids modulate central angiotensin II receptors in rats. Brain Research, 1986, 382, 87-96.	2.2	110
13	Anti-inflammatory effects of angiotensin-(1-7) in ischemic stroke. Neuropharmacology, 2013, 71, 154-163.	4.1	105
14	NAD(P)H Oxidase Inhibition Attenuates Neuronal Chronotropic Actions of Angiotensin II. Circulation Research, 2005, 96, 659-666.	4.5	99
15	Angiotensin typeÂ2 receptor (AT2R) and receptor Mas: a complex liaison. Clinical Science, 2015, 128, 227-234.	4.3	89
16	Reporter mouse strain provides a novel look at angiotensin type-2 receptor distribution in the central nervous system. Brain Structure and Function, 2016, 221, 891-912.	2.3	89
17	Microglial Cells Impact Gut Microbiota and Gut Pathology in Angiotensin II-Induced Hypertension. Circulation Research, 2019, 124, 727-736.	4.5	89
18	Angiotensin At ₁ Receptor Signalling Pathways In Neurons. Clinical and Experimental Pharmacology and Physiology, 2002, 29, 483-490.	1.9	88

#	Article	IF	CITATIONS
19	Perinatal Loss of Nkx2-5 Results in Rapid Conduction and Contraction Defects. Circulation Research, 2008, 103, 580-590.	4.5	86
20	Changes in skin angiotensin II receptors in rats during wound healing. Biochemical and Biophysical Research Communications, 1992, 187, 1083-1090.	2.1	83
21	Involvement of the Brain (Pro)renin Receptor in Cardiovascular Homeostasis. Circulation Research, 2010, 107, 934-938.	4.5	83
22	Angiotensin type 2 receptor–mediated apoptosis of human prostate cancer cells. Molecular Cancer Therapeutics, 2009, 8, 3255-3265.	4.1	82
23	Brain cytokines as neuromodulators in cardiovascular control. Clinical and Experimental Pharmacology and Physiology, 2010, 37, e52-7.	1.9	82
24	Angiotensin II Type 2 Receptor-Mediated Apoptosis of Cultured Neurons from Newborn Rat Brain**This work was supported by a grant from the NIH (NS-19441) and a postdoctoral fellowship (to U.V.S.) from the American Heart Association, Florida Affiliate Endocrinology, 1999, 140, 500-509.	2.8	81
25	Expression of Angiotensin AT1 and AT2 Receptors in Adult Rat Cardiomyocytes after Myocardial Infarction. American Journal of Pathology, 2000, 157, 605-611.	3.8	78
26	A current view of brain renin–angiotensin system: Is the (pro)renin receptor the missing link?. , 2010, 125, 27-38.		77
27	Protective arms of the renin–angiotensinâ€system in neurological disease. Clinical and Experimental Pharmacology and Physiology, 2013, 40, 580-588.	1.9	75
28	Selective activation of angiotensin <scp>AT</scp> ₂ receptors attenuates progression of pulmonary hypertension and inhibits cardiopulmonary fibrosis. British Journal of Pharmacology, 2015, 172, 2219-2231.	5.4	75
29	Impaired Autonomic Nervous System-Microbiome Circuit in Hypertension. Circulation Research, 2019, 125, 104-116.	4.5	73
30	A Unique "Angiotensin-Sensitive―Neuronal Population Coordinates Neuroendocrine, Cardiovascular, and Behavioral Responses to Stress. Journal of Neuroscience, 2017, 37, 3478-3490.	3.6	71
31	Angiotensin Type 1a Receptors in the Paraventricular Nucleus of the Hypothalamus Protect against Diet-Induced Obesity. Journal of Neuroscience, 2013, 33, 4825-4833.	3.6	70
32	Direct Pro-Inflammatory Effects of Prorenin on Microglia. PLoS ONE, 2014, 9, e92937.	2.5	70
33	Angiotensin type 2 receptors: blood pressure regulation and end organ damage. Current Opinion in Pharmacology, 2015, 21, 115-121.	3.5	70
34	Neuroprotective Mechanisms of the ACE2–Angiotensin-(1-7)–Mas Axis in Stroke. Current Hypertension Reports, 2015, 17, 3.	3.5	70
35	Distinct angiotensin II receptor in primary cultures of glial cells from rat brain Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 4655-4659.	7.1	68
36	Oxygen and Glucose Deprivation-Induced Neuronal Apoptosis is Attenuated by Halothane and Isoflurane. Anesthesia and Analgesia, 2001, 93, 1281-1287.	2.2	68

#	Article	IF	CITATIONS
37	Effects of Angiotensin Type 2 Receptor Overexpression in the Rostral Ventrolateral Medulla on Blood Pressure and Urine Excretion in Normal Rats. Hypertension, 2008, 51, 521-527.	2.7	67
38	Receptor-Mediated Effects of Angiotensin II on Neurons. Frontiers in Neuroendocrinology, 1994, 15, 203-230.	5.2	66
39	Angiotensin II Type 2 Receptor Stimulation of Neuronal Delayed-Rectifier Potassium Current Involves Phospholipase A2and Arachidonic Acid. Journal of Neuroscience, 1998, 18, 679-686.	3.6	66
40	Angiotensin II type 2 receptor promotes apoptosis and inhibits angiogenesis in bladder cancer. Journal of Experimental and Clinical Cancer Research, 2017, 36, 77.	8.6	66
41	Characterization of a functional (pro)renin receptor in rat brain neurons. Experimental Physiology, 2008, 93, 701-708.	2.0	64
42	Angiotensin II Type 2 Receptor-Mediated Stimulation of Protein Phosphatase 2A in Rat Hypothalamic/Brainstem Neuronal Cocultures. Journal of Neurochemistry, 2002, 65, 2131-2137.	3.9	63
43	Lentivirus-mediated overexpression of angiotensin-(1-7) attenuated ischaemia-induced cardiac pathophysiology. Experimental Physiology, 2011, 96, 863-874.	2.0	62
44	Functional Interactions Between Neuronal AT ₁ and AT ₂ Receptors. Endocrinology, 1997, 138, 2195-2195.	2.8	61
45	Specific inhibition of N-methyl-D-aspartate receptor function in rat hippocampal neurons by L-phenylalanine at concentrations observed during phenylketonuria. Molecular Psychiatry, 2002, 7, 359-367.	7.9	60
46	The angiotensin type 2 receptor agonist Compound 21 elicits cerebroprotection in endothelin-1 induced ischemic stroke. Neuropharmacology, 2014, 81, 134-141.	4.1	60
47	Modulation of net outward current in cultured neurons by angiotensin II: involvement of AT1 and AT2 receptors. Brain Research, 1992, 580, 317-324.	2.2	59
48	Role of Prolylcarboxypeptidase in Angiotensin II Type 2 Receptor–Mediated Bradykinin Release in Mouse Coronary Artery Endothelial Cells. Hypertension, 2010, 56, 384-390.	2.7	59
49	Direct antiâ€inflammatory effects of angiotensinâ€(1–7) on microglia. Journal of Neurochemistry, 2016, 136, 163-171.	3.9	59
50	Characterization of Mitotic Neurons Derived From Adult Rat Hypothalamus and Brain Stem. Journal of Neurophysiology, 2002, 87, 1076-1085.	1.8	58
51	Obesity induces neuroinflammation mediated by altered expression of the renin–angiotensin system in mouse forebrain nuclei. Physiology and Behavior, 2014, 136, 31-38.	2.1	58
52	Macrophage Migration Inhibitory Factor: An Intracellular Inhibitor of Angiotensin II-Induced Increases in Neuronal Activity. Journal of Neuroscience, 2004, 24, 9944-9952.	3.6	56
53	Centrally administered angiotensinâ€{1–7) increases the survival of strokeâ€prone spontaneously hypertensive rats. Experimental Physiology, 2014, 99, 442-453.	2.0	56
54	Activation of the Neuroprotective Angiotensin-Converting Enzyme 2 in Rat Ischemic Stroke. Hypertension, 2015, 66, 141-148.	2.7	56

#	Article	IF	CITATIONS
55	Prevention of Cardiac Hypertrophy by Angiotensin II Type-2 Receptor Gene Transfer. Hypertension, 2004, 43, 1233-1238.	2.7	55
56	Moderate cardiacâ€selective overexpression of angiotensin II type 2 receptor protects cardiac functions from ischaemic injury. Experimental Physiology, 2012, 97, 89-101.	2.0	55
57	Angiotensin II Type 1 Receptor mRNA Levels in the Brains of Normotensive and Spontaneously Hypertensive Rats. Journal of Neurochemistry, 1993, 60, 1949-1952.	3.9	53
58	The Selective Angiotensin II Type 2 Receptor Agonist, Compound 21, Attenuates the Progression of Lung Fibrosis and Pulmonary Hypertension in an Experimental Model of Bleomycin-Induced Lung Injury. Frontiers in Physiology, 2018, 9, 180.	2.8	53
59	Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R444-R458.	1.8	52
60	Angiotensin II type 2 receptor gene transfer elicits cardioprotective effects in an angiotensin II infusion rat model of hypertension. Physiological Genomics, 2004, 19, 255-261.	2.3	49
61	Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling. Regulatory Peptides, 1998, 73, 141-147.	1.9	48
62	Cerebroprotective action of angiotensin peptides in stroke. Clinical Science, 2014, 126, 195-205.	4.3	48
63	Angiotensin II Decreases Neuronal Delayed Rectifier Potassium Current: Role of Calcium/Calmodulin-Dependent Protein Kinase II. Journal of Neurophysiology, 1999, 82, 1560-1568.	1.8	46
64	A comparison of the potencies of various dopamine receptor agonists in models for pre- and postsynaptic receptor activity. Naunyn-Schmiedeberg's Archives of Pharmacology, 1983, 324, 108-115.	3.0	45
65	Immunocytochemical and Biochemical Characterization of Angiotensin I and II in Cultured Neuronal and Glial Cells from Rat Brain. Neuroendocrinology, 1988, 47, 125-132.	2.5	45
66	Long-term changes in glutamatergic synaptic transmission in phenylketonuria. Brain, 2004, 128, 300-307.	7.6	44
67	Central pressor action of neurotensin in conscious rats Hypertension, 1982, 4, 888-893.	2.7	43
68	Chronotropic Action of Angiotensin II in Neurons via Protein Kinase C and CaMKII. Hypertension, 2002, 39, 562-566.	2.7	43
69	Direct angiotensin typeÂ2 receptor (AT2R) stimulation attenuates T-cell and microglia activation and prevents demyelination in experimental autoimmune encephalomyelitis in mice. Clinical Science, 2015, 128, 95-109.	4.3	43
70	Peptide receptors in astroglia: Focus on angiotensin II and atrial natriuretic peptide. Glia, 1994, 11, 110-116.	4.9	42
71	Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling. Regulatory Peptides, 1997, 72, 139-145.	1.9	42
72	Anesthesia with sevoflurane in neonatal rats: Developmental neuroendocrine abnormalities and alleviating effects of the corticosteroid and Clâ [°] importer antagonists. Psychoneuroendocrinology, 2015, 60, 173-181.	2.7	42

#	Article	IF	CITATIONS
73	Angiotensin-(1-7) Decreases Cell Growth and Angiogenesis of Human Nasopharyngeal Carcinoma Xenografts. Molecular Cancer Therapeutics, 2016, 15, 37-47.	4.1	42
74	Nucleus of the Solitary Tract (Pro)Renin Receptor-Mediated Antihypertensive Effect Involves Nuclear Factor-κB-Cytokine Signaling in the Spontaneously Hypertensive Rat. Hypertension, 2013, 61, 622-627.	2.7	41
75	Neuroimmune communication in hypertension and obesity: A new therapeutic angle?. , 2013, 138, 428-440.		41
76	Characterization of a polyclonal anti-peptide antibody to the angiotensin II type-1 (AT1) receptor. Biochemical and Biophysical Research Communications, 1992, 183, 781-788.	2.1	39
77	Angiotensin II type 1 receptor-modulated signaling pathways in neurons. Molecular Neurobiology, 1999, 19, 25-41.	4.0	39
78	Candesartan pretreatment is cerebroprotective in a rat model of endothelinâ€1â€induced middle cerebral artery occlusion. Experimental Physiology, 2009, 94, 937-946.	2.0	39
79	A-Type K+ Current in Neurons Cultured From Neonatal Rat Hypothalamus and Brain Stem: Modulation by Angiotensin II. Journal of Neurophysiology, 1997, 78, 1021-1029.	1.8	38
80	Angiotensin II increases GABA _B receptor expression in nucleus tractus solitarii of rats. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2712-H2720.	3.2	38
81	Antiâ€fibrotic mechanisms of angiotensin AT ₂ â€receptor stimulation. Acta Physiologica, 2019, 227, e13280.	3.8	38
82	Brain angiotensin type-1 and type-2 receptors: cellular locations under normal and hypertensive conditions. Hypertension Research, 2020, 43, 281-295.	2.7	37
83	Angiotensin II Type 2 Receptor-Mediated Apoptosis of Cultured Neurons from Newborn Rat Brain. Endocrinology, 1999, 140, 500-509.	2.8	37
84	Characterization of Glucocorticoid Type II Receptors in Neuronal and Glial Cultures from Rat Brain. Journal of Neuroendocrinology, 1990, 2, 29-38.	2.6	36
85	Mechanisms Underlying the Chronotropic Effect of Angiotensin II on Cultured Neurons From Rat Hypothalamus and Brain Stem. Journal of Neurophysiology, 1997, 78, 1013-1020.	1.8	36
86	L-phenylalanine selectively depresses currents at glutamatergic excitatory synapses. Journal of Neuroscience Research, 2003, 72, 116-124.	2.9	36
87	Rat brain cells in primary culture: visualization and measurement of catecholamines. Brain Research, 1983, 264, 267-275.	2.2	35
88	Neuronal Ion Channel Signalling Pathways. Cellular Signalling, 1998, 10, 303-311.	3.6	35
89	Endocrine and Neurobehavioral Abnormalities Induced by Propofol Administered to Neonatal Rats. Anesthesiology, 2014, 121, 1010-1017.	2.5	35
90	Increased Expression of Angiotensin II Type 2 Receptors in the Solitary–Vagal Complex Blunts Renovascular Hypertension. Hypertension, 2014, 64, 777-783.	2.7	35

#	Article	IF	CITATIONS
91	Identification of protein phosphatase involvement in the AT2 receptor-induced activation of endothelial nitric oxide synthase. Clinical Science, 2018, 132, 777-790.	4.3	35
92	Correcting the imbalanced protective RAS in COVID-19 with angiotensin AT2-receptor agonists. Clinical Science, 2020, 134, 2987-3006.	4.3	35
93	Effects of Angiotensin II Type 2 Receptor Overexpression on the Growth of Hepatocellular Carcinoma Cells In Vitro and In Vivo. PLoS ONE, 2013, 8, e83754.	2.5	35
94	Glucocorticoids potentiate the dipsogenic action of angiotensin II. Brain Research, 1989, 499, 121-130.	2.2	34
95	Angiotensin II Type 1 Receptor–Mediated Inhibition of K + Channel Subunit Kv2.2 in Brain Stem and Hypothalamic Neurons. Circulation Research, 1999, 84, 352-359.	4.5	34
96	Neuroprotection via AT2 receptor agonists in ischemic stroke. Clinical Science, 2018, 132, 1055-1067.	4.3	34
97	Drinking behavior elicited by central injection of angiotensin II: roles for protein kinase C and Ca2+/calmodulin-dependent protein kinase II. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 285, R632-R640.	1.8	33
98	Angiotensin Type-2 Receptors Influence the Activity of Vasopressin Neurons in the Paraventricular Nucleus of the Hypothalamus in Male Mice. Endocrinology, 2016, 157, 3167-3180.	2.8	33
99	Expression of mineralocorticoid Type I and glucocorticoid Type II receptors in astrocyte glia as a function of time in culture. Developmental Brain Research, 1991, 61, 55-61.	1.7	32
100	Angiotensin II Stimulates Activation of Fos-Regulating Kinase and c-Jun NH ₂ -Terminal Kinase in Neuronal Cultures from Rat Brain ¹ . Endocrinology, 1998, 139, 245-251.	2.8	32
101	Neuroprotective Action of Halogenated Derivatives of L-Phenylalanine. Stroke, 2004, 35, 1192-1196.	2.0	32
102	Angiotensin II type 2 receptor-stimulated activation of plasma prekallikrein and bradykinin release: role of SHP-1. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H2553-H2559.	3.2	32
103	Reduced dipsogenic responsiveness to intracerebroventricularly administered angiotensin II in estrogen-treated rats. Brain Research, 1985, 338, 115-121.	2.2	31
104	Angiotensin II Increases Neuronal Delayed Rectifier K+ Current: Role of 12-Lipoxygenase Metabolites of Arachidonic Acid. Journal of Neurophysiology, 2000, 84, 2494-2501.	1.8	31
105	Cytokine―and Endotoxinâ€Induced Nitric Oxide Synthase in Rat Astroglial Cultures: Differential Modulation by Angiotensin II. Journal of Neurochemistry, 1997, 68, 935-944.	3.9	31
106	Lentiviral Vectors Mediate Long-Term and High Efficiency Transgene Expression in HEK 293T cells. International Journal of Medical Sciences, 2015, 12, 407-415.	2.5	31
107	Angiotensin II Type 2 Receptor–Mediated Regulation of Rat Neuronal K + Channels. Circulation Research, 1996, 79, 302-309.	4.5	31
108	Potentiation of angiotensin II-induced drinking by glucocorticoids is a specific glucocorticoid Type II receptor (GR)-mediated event. Brain Research, 1991, 552, 283-290.	2.2	30

#	Article	IF	CITATIONS
109	α ₁ â€Adrenergic Receptorâ€Mediated Downregulation of Angiotensin II Receptors in Neuronal Cultures. Journal of Neurochemistry, 1986, 47, 1117-1126.	3.9	30
110	Macrophage migration inhibitory factor in hypothalamic paraventricular nucleus neurons decreases blood pressure in spontaneously hypertensive rats. FASEB Journal, 2008, 22, 3175-3185.	0.5	30
111	Chronic Knockdown of the Nucleus of the Solitary Tract AT ₁ Receptors Increases Blood Inflammatory-Endothelial Progenitor Cell Ratio and Exacerbates Hypertension in the Spontaneously Hypertensive Rat. Hypertension, 2013, 61, 1328-1333.	2.7	30
112	Protective Angiotensin Type 2 Receptors in the Brain and Hypertension. Current Hypertension Reports, 2017, 19, 46.	3.5	30
113	Centrally Mediated Cardiovascular Actions of the Angiotensin II Type 2 Receptor. Trends in Endocrinology and Metabolism, 2017, 28, 684-693.	7.1	30
114	Selective Silencing of Angiotensin Receptor Subtype 1a (AT 1a R) by RNA Interference. Hypertension, 2005, 45, 115-119.	2.7	29
115	Neuroprotection by postâ€stroke administration of an oral formulation of angiotensinâ€(1–7) in ischaemic stroke. Experimental Physiology, 2018, 103, 916-923.	2.0	29
116	Butyrate regulates inflammatory cytokine expression without affecting oxidative respiration in primary astrocytes from spontaneously hypertensive rats. Physiological Reports, 2018, 6, e13732.	1.7	29
117	Receptors for phorbol esters are primarily localized in neurons: Comparison of neuronal and glial cultures. Neurochemical Research, 1988, 13, 51-56.	3.3	28
118	Smallâ€molecule AT2 receptor agonists. Medicinal Research Reviews, 2018, 38, 602-624.	10.5	28
119	The effect of neuroleptic drugs on drinking induced by central administration of angiotensin or carbachol. Psychopharmacology, 1979, 60, 291-294.	3.1	27
120	AT1 Receptors and Angiotensin Actions in the Brain and Neuronal Cultures of Normotensive and Hypertensive Rats. Advances in Experimental Medicine and Biology, 1995, 377, 331-348.	1.6	27
121	Angiotensin II stimulates changes in the norepinephrine content of primary cultures of rat brain. Neuroscience Letters, 1983, 36, 305-309.	2.1	26
122	Regulation of secretogranin II mRNA in rat neuronal cultures. Molecular Brain Research, 1995, 33, 326-332.	2.3	25
123	Novel Role of Macrophage Migration Inhibitory Factor in Angiotensin II Regulation of Neuromodulation in Rat Brain. Endocrinology, 2001, 142, 4623-4630.	2.8	25
124	ANG II-mediated inhibition of neuronal delayed rectifier K+ current: role of protein kinase C-α. American Journal of Physiology - Cell Physiology, 2001, 281, C17-C23.	4.6	25
125	Potentiation of the antihypertensive action of losartan by peripheral overexpression of the ANG II type 2 receptor. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H727-H735.	3.2	25
126	Angiotensin II Regulation of Intracellular Calcium in Astroglia Cultured from Rat Hypothalamus and Brainstem. Journal of Neurochemistry, 1996, 67, 996-1004.	3.9	24

#	Article	IF	CITATIONS
127	Characteristics of the βâ€Adrenoreceptor from Neuronal and Glial Cells in Primary Cultures of Rat Brain. Journal of Neurochemistry, 1986, 47, 1318-1326.	3.9	24
128	Immunostaining evidence for PI(4,5)P2 localization at the leading edge of chemoattractant-stimulated HL-60 cells. Journal of Leukocyte Biology, 2008, 84, 440-447.	3.3	24
129	Angiotensin II Stimulates Protein Phosphatase 2A Activity in Cultured Neuronal Cells Via Type 2 Receptors in a Pertussis Toxin Sensitive Fashion. Advances in Experimental Medicine and Biology, 1996, 396, 209-215.	1.6	24
130	Effects of specific dopamine lesions and dopamine receptor sensitivity on angiotensin II- and carbachol-induced thirst in rats. Psychopharmacology, 1981, 73, 180-183.	3.1	23
131	Enhanced transgene expression in rat brain cell cultures with a disulfide-containing cationic lipid. Neuroscience Letters, 1999, 277, 141-144.	2.1	23
132	The Renin-Angiotensin System in Hypertension, a Constantly Renewing Classic: Focus on the Angiotensin AT2-Receptor. Canadian Journal of Cardiology, 2020, 36, 683-693.	1.7	23
133	Hypertension-Linked Decrease in the Expression of Brain Î ³ -Adducin. Circulation Research, 2002, 91, 633-639.	4.5	22
134	Macrophage migration inhibitory factor in the PVN attenuates the central pressor and dipsogenic actions of angiotensin II. FASEB Journal, 2006, 20, 1748-1750.	0.5	22
135	Role of environmental stressors in determining the developmental outcome of neonatal anesthesia. Psychoneuroendocrinology, 2017, 81, 96-104.	2.7	22
136	Functional Interactions Between Neuronal AT1 and AT2 Receptors. Endocrinology, 1997, 138, 2195-2195.	2.8	22
137	Chronic dietary administration of tryptophan prevents the development of deoxycorticosterone acetate salt induced hypertension in rats. Canadian Journal of Physiology and Pharmacology, 1987, 65, 753-764.	1.4	21
138	Obligatory Role of Protein Kinase CÎ ² and MARCKS in Vesicular Trafficking in Living Neurons. Hypertension, 2002, 39, 567-572.	2.7	21
139	Modulation of delayed rectifier potassium current by angiotensin II in CATH.a cells. Biochemical and Biophysical Research Communications, 2003, 310, 710-714.	2.1	21
140	Protective effects of the angiotensin II AT2 receptor agonist compound 21 in ischemic stroke: a nose-to-brain delivery approach. Clinical Science, 2018, 132, 581-593.	4.3	21
141	?2-Adrenergic Receptors in Neuronal and Glial Cultures: Characterization and Comparison. Journal of Neurochemistry, 1989, 53, 287-296.	3.9	20
142	Overexpression of AT2R in the solitary-vagal complex improves baroreflex in the spontaneously hypertensive rat. Neuropeptides, 2016, 60, 29-36.	2.2	20
143	AAV-Mediated angiotensin 1-7 overexpression inhibits tumor growth of lung cancer <i>in vitro</i> and <i>in vivo</i> . Oncotarget, 2017, 8, 354-363.	1.8	20
144	Effects of increased circulating angiotensin II (AII) on fluid exchange and binding of All in the brain. Brain Research Bulletin, 1988, 20, 493-501.	3.0	19

#	Article	IF	CITATIONS
145	Serum activity of angiotensin converting enzyme 2 is decreased in patients with acute ischemic stroke. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2016, 17, 147032031666106.	1.7	19
146	Modulating of ocular inflammation with macrophage migration inhibitory factor is associated with notch signalling in experimental autoimmune uveitis. Clinical and Experimental Immunology, 2016, 183, 280-293.	2.6	19
147	PI3-Kinase Inhibitors Abolish the Enhanced Chronotropic Effects of Angiotensin II in Spontaneously Hypertensive Rat Brain Neurons. Journal of Neurophysiology, 2003, 90, 3155-3160.	1.8	19
148	Post-stroke angiotensin II type 2 receptor activation provides long-term neuroprotection in aged rats. PLoS ONE, 2017, 12, e0180738.	2.5	19
149	Chronotropic Effect of Angiotensin II via Type 2 Receptors in Rat Brain Neurons. Journal of Neurophysiology, 2001, 85, 2177-2183.	1.8	18
150	Redox regulation of macrophage migration inhibitory factor expression in rat neurons. Biochemical and Biophysical Research Communications, 2009, 390, 171-175.	2.1	18
151	Involvement of both dopaminergic and α-adrenergic receptors in the hypomotility induced by dibenzoyl-6,7-ADTN. European Journal of Pharmacology, 1981, 70, 541-550.	3.5	17
152	Desflurane and Sevoflurane Attenuate Oxygen and Glucose Deprivation-Induced Neuronal Cell Death. Journal of Neurosurgical Anesthesiology, 2003, 15, 193-199.	1.2	17
153	Elevated blood pressure in normotensive rats produced by â€~knockdown' of the angiotensin type 2 receptor. Experimental Physiology, 2004, 89, 313-322.	2.0	17
154	Angiotensin II Type 2 Receptor–Mediated Gene Expression Profiling in Human Coronary Artery Endothelial Cells. Hypertension, 2005, 45, 692-697.	2.7	17
155	Intronic enhancement of angiotensin II type 2 receptor transgene expression in vitro and in vivo. Biochemical and Biophysical Research Communications, 2005, 336, 29-35.	2.1	17
156	α ₁ â€Adrenergic Receptors in Neuronal Cultures from Rat Brain: Increased Expression in the Spontaneously Hypertensive Rat. Journal of Neurochemistry, 1986, 47, 1190-1198.	3.9	17
157	Regulation of Angiotensin II Type 1 Receptor mRNA in Neuronal Cultures of Normotensive and Spontaneously Hypertensive Rat Brains by Phorbol Esters and Forskolin. Journal of Neurochemistry, 1994, 62, 2079-2084.	3.9	17
158	Angiotensin Type 2 Receptors: Painful, or Not?. Frontiers in Pharmacology, 2020, 11, 571994.	3.5	17
159	Protein Kinase C Agonists Increase the Expression of Angiotensin II Receptors in Neuronal Cultures. Journal of Neurochemistry, 1987, 48, 1954-1961.	3.9	16
160	Angiotensin II-Induced Decrease in Expression of Inducible Nitric Oxide Synthase in Rat Astroglial Cultures. Journal of Neurochemistry, 2001, 74, 613-620.	3.9	16
161	Angiotensin II induction of AP-1 in neurons requires stimulation of PI3-K and JNK. Biochemical and Biophysical Research Communications, 2003, 310, 470-477.	2.1	16
162	Macrophage Migration Inhibitory Factor Increases Neuronal Delayed Rectifier K+ Current. Journal of Neurophysiology, 2006, 95, 1042-1048.	1.8	16

#	Article	IF	CITATIONS
163	Macrophage migration inhibitory factor in the nucleus of solitary tract decreases blood pressure in SHRs. Cardiovascular Research, 2013, 97, 153-160.	3.8	16
164	Increased Expression of Macrophage Migration Inhibitory Factor in the Nucleus of the Solitary Tract Attenuates Renovascular Hypertension in Rats. American Journal of Hypertension, 2017, 30, 435-443.	2.0	16
165	Chronic Treatment with L-5-Hydroxytryptophan Prevents the Development of DOCA-Salt-Induced Hypertension in Rats. Journal of Hypertension, 1987, 5, 621-628.	0.5	15
166	Effect of chronic dietary treatment with <scp>L</scp> -tryptophan on the maintenance of hypertension in spontaneously hypertensive rats. Canadian Journal of Physiology and Pharmacology, 1989, 67, 656-662.	1.4	15
167	The influence of angiotensin II on catecholamine synthesis in neuronal cultures from rat brain. Biochemical and Biophysical Research Communications, 1990, 167, 492-497.	2.1	15
168	Transduction of a Functional Domain of the AT1Receptor in Neurons by HIV-Tat PTD. Hypertension, 2003, 41, 751-756.	2.7	15
169	Macrophage Migration Inhibitory Factor in the Paraventricular Nucleus Plays a Major Role in the Sympathoexcitatory Response to Salt. Hypertension, 2010, 56, 956-963.	2.7	15
170	Angiotensin 1-7 Overexpression Mediated by a Capsid-optimized AAV8 Vector Leads to Significant Growth Inhibition of Hepatocellular Carcinoma <i>In vivo</i> . International Journal of Biological Sciences, 2018, 14, 57-68.	6.4	15
171	Importance of AT1 and AT2 receptors in the nucleus of the solitary tract in cardiovascular responses induced by a high-fat diet. Hypertension Research, 2019, 42, 439-449.	2.7	15
172	Modulation of angiotensin II type 2 receptor mRNA in rat hypothalamus and brainstem neuronal cultures by growth factors. Molecular Brain Research, 1997, 47, 229-236.	2.3	14
173	Lack of Macrophage Migration Inhibitory Factor Regulation Is Linked to the Increased Chronotropic Action of Angiotensin II in SHR Neurons. Hypertension, 2007, 49, 528-534.	2.7	14
174	Adenovirus-Mediated Angiotensin II Type 2 Receptor Overexpression Inhibits Tumor Growth of Prostate Cancer <i>In Vivo</i> . Journal of Cancer, 2016, 7, 184-191.	2.5	14
175	Brain Angiotensin Type-1 and Type-2 Receptors in Physiological and Hypertensive Conditions: Focus on Neuroinflammation. Current Hypertension Reports, 2020, 22, 48.	3.5	14
176	Angiotensin II Stimulates Activation of Fos-Regulating Kinase and c-Jun NH2-Terminal Kinase in Neuronal Cultures from Rat Brain. Endocrinology, 1998, 139, 245-251.	2.8	14
177	Dipeptidyl peptidase-II activity in cultured astroglial cells from neonatal rat brain. Brain Research, 1987, 406, 113-117.	2.2	13
178	Selective tropism of the recombinant adenoâ€associated virus 9 serotype for rat cardiac tissue. Journal of Gene Medicine, 2010, 12, 22-34.	2.8	13
179	Gene Expression Profiling Associated with Angiotensin II Type 2 Receptor-Induced Apoptosis in Human Prostate Cancer Cells. PLoS ONE, 2014, 9, e92253.	2.5	13
180	ACE2 activator diminazene aceturate reduces adiposity but preserves lean mass in young and old rats. Experimental Gerontology, 2018, 111, 133-140.	2.8	13

#	Article	IF	CITATIONS
181	Phorbol Ester-Induced Upregulation of Angiotensin II Receptors in Neuronal Cultures Is Potentiated by a Calcium Ionophore. Journal of Neurochemistry, 1988, 51, 153-162.	3.9	12
182	α1-Adrenergic receptors in the nucleus tractus solitarii region of rats with experimental and genetic hypertension. Brain Research, 1990, 519, 261-265.	2.2	12
183	Norepinephrine increases angiotensin II binding in rat brain synaptosomes. Brain Research Bulletin, 1992, 28, 411-415.	3.0	12
184	Gene Expression Profiling of Rat Brain Neurons Reveals Angiotensin II-Induced Regulation of Calmodulin and Synapsin I: Possible Role in Neuromodulation*. Endocrinology, 2001, 142, 1009-1016.	2.8	12
185	Central angiotensin II increases biosynthesis of tyrosine hydroxylase in the rat adrenal medulla. Biochemical and Biophysical Research Communications, 2004, 313, 623-626.	2.1	12
186	Neonatal rat brain astroglial dipeptidyl peptidase II activity regulation by cations and anions. Neuroscience Letters, 1988, 89, 319-322.	2.1	11
187	Angiotensin II type 2 receptor expression in neuronal cultures from spontaneously hypertensive rat brain. Regulatory Peptides, 1993, 44, 181-188.	1.9	11
188	Regulation of α2A-Adrenergic Receptor mRNA in Rat Astroglial Cultures: Role of Cyclic AMP and Protein Kinase C. Journal of Neurochemistry, 2002, 68, 47-57.	3.9	11
189	Recombinant adeno-associated virus serotype 2 effectively transduces primary rat brain astrocytes and microglia. Brain Research Protocols, 2004, 14, 18-24.	1.6	11
190	Interleukin-10 inhibits angiotensin II-induced decrease in neuronal potassium current. American Journal of Physiology - Cell Physiology, 2013, 304, C801-C807.	4.6	11
191	Increased expression of $\hat{l}\pm 1$ -adrenergic receptors in the hypothalamus of spontaneously hypertensive rats. Brain Research, 1988, 439, 187-194.	2.2	10
192	Antagonism of the Positive Dromotropic Effect of Isoproterenol by Adenosine: Role of Nitric Oxide, cGMP-dependent cAMP-phosphodiesterase and Protein Kinase G. Journal of Molecular and Cellular Cardiology, 2000, 32, 1609-1619.	1.9	10
193	A pH-dependent increase in neuronal glutamate efflux in vitro: Possible involvement of ASCT1. Brain Research, 2005, 1056, 105-112.	2.2	10
194	Phosphate-Activated Glutaminase-Containing Neurons in the Rat Paraventricular Nucleus Express Angiotensin Type 1 Receptors. Hypertension, 2009, 54, 845-851.	2.7	10
195	Novel mechanism within the paraventricular nucleus reduces both blood pressure and hypothalamic pituitary-adrenal axis responses to acute stress. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H634-H645.	3.2	10
196	Sodium increases angiotensin II receptors in neuronal cultures from brains of normotensive and hypertensive rats. Brain Research, 1986, 370, 265-272.	2.2	9
197	α1-Adrenergic receptors in the brain: characterization in astrocytic glial cultures and comparison with neuronal cultures. Brain Research, 1990, 527, 318-325.	2.2	9
198	Targeting angiotensin type-2 receptors located on pressor neurons in the nucleus of the solitary tract to relieve hypertension in mice. Cardiovascular Research, 2022, 118, 883-896.	3.8	9

#	Article	IF	CITATIONS
199	Angiotensin II inhibits the K+-evoked release of [3H]norepinephrine from hypothalamic synaptosomes of the spontaneously hypertensive rat. Brain Research, 1987, 403, 167-171.	2.2	8
200	Regulation of α _{2A} â€Adrenergic Receptor Expression by Epinephrine in Cultured Astroglia from Rat Brain. Journal of Neurochemistry, 1998, 70, 86-95.	3.9	8
201	Adenoviral-mediated neuron specific transduction of angiotensin II type 2 receptors. Regulatory Peptides, 2005, 126, 213-222.	1.9	8
202	Basal and angiotensin II-inhibited neuronal delayed-rectifier K+ current are regulated by thioredoxin. American Journal of Physiology - Cell Physiology, 2007, 293, C211-C217.	4.6	8
203	Novel Role of Macrophage Migration Inhibitory Factor in Angiotensin II Regulation of Neuromodulation in Rat Brain. Endocrinology, 2001, 142, 4623-4630.	2.8	8
204	Lack of alpha-1-adrenergic receptor-mediated downregulation of angiotensin II receptors in neuronal cultures from spontaneously hypertensive rat brain. Molecular and Cellular Biochemistry, 1989, 91, 111-115.	3.1	7
205	Efficacy of 3,5â€dibromo‣â€phenylalanine in rat models of stroke, seizures and sensorimotor gating deficit. British Journal of Pharmacology, 2009, 158, 2005-2013.	5.4	7
206	Adenoviral and Adeno-Associated Viral Vectors-Mediated Neuronal Gene Transfer to Cardiovascular Control Regions of the Rat Brain. International Journal of Medical Sciences, 2013, 10, 607-616.	2.5	7
207	Angiotensin receptor expression revealed by reporter mice and beneficial effects of AT2R agonist in retinal cells. Experimental Eye Research, 2019, 187, 107770.	2.6	7
208	Neurochemical and behavioural profiles of five dopamine analogues. Naunyn-Schmiedeberg's Archives of Pharmacology, 1981, 316, 304-310.	3.0	6
209	Differential Modulation of Glutamatergic Transmission by 3,5-Dibromo-l-phenylalanine. Molecular Pharmacology, 2005, 67, 1648-1654.	2.3	6
210	Irreversible Binding and Recovery of the Norepinephrine Uptake System Using an Alkylating Derivative of Norepinephrine. Journal of Neurochemistry, 1988, 50, 1044-1052.	3.9	4
211	Effects of phorbol esters and a calcium ionophore on angiotensin II binding in rat brain synaptosomes. Neurochemical Research, 1989, 14, 25-30.	3.3	4
212	Adrenergic and calcium-mediated subcellular redistribution of protein kinase C in primary neuronal cultures. Biochemical and Biophysical Research Communications, 1990, 166, 22-28.	2.1	4
213	Calcium-modulated inward rectification of a calcium-activated potassium channel in neurons. Journal of Neurophysiology, 1994, 72, 3023-3025.	1.8	4
214	Halogenated Derivatives of Aromatic Amino Acids Exhibit Balanced Antiglutamatergic Actions: Potential Applications for the Treatment of Neurological and Neuropsychiatric Disorders. Recent Patents on CNS Drug Discovery, 2006, 1, 261-270.	0.9	3
215	Effect of chronic dietary treatment with 1-tryptophan on spontaneous salt appetite of rats. Pharmacology Biochemistry and Behavior, 1989, 33, 401-406.	2.9	2
216	Halogenated aromatic amino acid 3,5-dibromo-d-tyrosine produces beneficial effects in experimental stroke and seizures. Amino Acids, 2011, 40, 1151-1158.	2.7	2

#	Article	IF	CITATIONS
217	Comment on "protective arms of the renin–angiotensin system in neurological disease― Reply. Clinical and Experimental Pharmacology and Physiology, 2013, 40, 838-839.	1.9	2
218	Hypertension and Brain Inflammation: Role of RAS-Induced Glial Activation. , 2016, , 181-194.		2
219	MICROGLIAL ACTIVATION BY THE BRAIN RENINâ€ANGIOTENSIN SYSTEM. FASEB Journal, 2011, 25, 661.2.	0.5	2
220	Abstract TP111: Activation of the Brain Renin-Angiotensin System by Translational Approaches Following Stroke Onset Is Neuroprotective in a Rat Model of Ischemic Stroke. Stroke, 2013, 44, .	2.0	2
221	Angiotensin Receptors - Affinity and Beyond. Clinical Science, 2022, 136, 799-802.	4.3	2
222	Overexpression of Angiotensin II type 2 receptor (AT2R) in neonatal cardiomyocytes induces apoptosis. FASEB Journal, 2008, 22, 1238.18.	0.5	1
223	Angiotensin II Inhibits Inducible Nitric Oxide Formation in Rat Astroglial Cultures. Neuropsychopharmacology, 1994, 11, 274-274.	5.4	Ο
224	Mas and Neuroprotection in Stroke. , 2015, , 201-205.		0
225	Thioredoxin increases neuronal delayed rectifier K+ current. FASEB Journal, 2006, 20, .	0.5	Ο
226	Glucocorticoids Enhance Expression of Angiotensin II Type 1 Receptors in the Dorsal Hindbrain. FASEB Journal, 2008, 22, 1171.6.	0.5	0
227	Expression of functional Angiotensin II (Ang II) receptors types, AT 1 R and AT 2 R, in RVLM neuronal cultures from adult rat brain. FASEB Journal, 2008, 22, 1210.12.	0.5	Ο
228	Paraventricular nucleus (PVN) neurons projecting to the rostral ventrolateral medulla (RVLM) contain both oxytocin and glutamate. FASEB Journal, 2009, 23, 967.6.	0.5	0
229	Hyperosmotic evoked sympathoexcitation is blocked by overexpression of macrophage inhibitory migration factor (MIF) in the paraventricular nucleus of hypothalamus (PVN). FASEB Journal, 2009, 23, 792.11.	0.5	Ο
230	Central hypertonic NaCl increases cytokine expression in the hypothalamic paraventricular nucleus. FASEB Journal, 2010, 24, 809.8.	0.5	0
231	Evidence for a depressor action of AT1 receptors in the nucleus of the solitary tract (NTS). FASEB Journal, 2010, 24, 809.11.	0.5	0
232	The RNA Binding Complex Translinâ€Trax Mediates Proâ€Excitatory Activity in Neurons. FASEB Journal, 2010, 24, 794.5.	0.5	0
233	Expression of AT1, AT2 receptors, and a nonâ€AT1, nonâ€AT2 angiotensin II binding site in rat brain after endothelinâ€∎ induced ischemic stroke. FASEB Journal, 2011, 25, lb618.	0.5	0
234	Repeated Restraint Stress Increases Baseline Blood Pressure in Spontaneously Hypertensive Rats. FASEB Journal, 2012, 26, 1091.69.	0.5	0

#	Article	IF	CITATIONS
235	Proâ€inflammatory action of reninâ€engiotensinâ€eldosterone system (RAAS) in hypothalamic astrocytes from spontaneously hypertensive rats (SHR). FASEB Journal, 2012, 26, 891.10.	0.5	0
236	Angiotensin type 2 receptors (AT2R) over expression in the nucleus of the solitary tract (NTS) attenuate renovascular hypertension. FASEB Journal, 2012, 26, 1091.15.	0.5	0
237	Macrophage inhibitory factor (MIF) in the nucleus of tract solitary (NTS) improves baroreflex function in spontaneously hypertensive rats (SHR). FASEB Journal, 2012, 26, .	0.5	0
238	The Role of Macrophage Migration Inhibitory Factor (MIF) in the Paraventricular Nucleus (PVN) During Acute Stress. FASEB Journal, 2012, 26, 1091.72.	0.5	0
239	Microglialâ€neuronal interactions in the paraventricular nucleus (PVN): a potential mechanism underlying neurogenic hypertension. FASEB Journal, 2012, 26, 891.3.	0.5	0
240	Increased expression of AT2 receptors in the nucleus of the solitary tract improves baroreflex function in renovascular hypertensive rats FASEB Journal, 2013, 27, 927.10.	0.5	0
241	Macrophage Migration Inhibitory Factor (MIF) Acts in the Paraventricular Nucleus of the Hypothalamus (PVN) to Decrease the Corticosterone Response to Stress. FASEB Journal, 2013, 27, 690.4.	0.5	0
242	In vitro AAV5â€mediated expression of metalloendopeptidase neurolysin in mouse brain primary cultures. FASEB Journal, 2013, 27, 690.7.	0.5	0
243	MACROPHAGE MIGRATION INHIBITORY FACTOR (MIF) DECREASES NEUROINFLAMMATION IN THE SOLITARY TRACT NUCLEUS (NTS) OF SPONTANEOUSLY HYPERTENSIVE RATS (SHR) FASEB Journal, 2013, 27, 1118.2.	0.5	0
244	Antiâ€inflammatory action of angiotensinâ€(1–7) and the angiotensin type 2 receptor agonist Compound 21 in hypothalamic microglia. FASEB Journal, 2013, 27, 692.3.	0.5	0
245	Abstract W P196: Post-Stroke Activation of Angiotensin Converting Enzyme 2 is Neuroprotective. Stroke, 2014, 45, .	2.0	0
246	Abstract T P228: Ischemic Stroke Results in Increased Activity of the Neuroprotective Angiotensin Converting Enzyme 2 in Rat Brain and Serum. Stroke, 2015, 46, .	2.0	0
247	A Nonpeptide Angiotensin II Type 2 Receptor Agonist Prevents Pulmonary Fibrosis. FASEB Journal, 2015, 29, LB746.	0.5	0
248	Cellular Localization of the (Pro)renin Receptor within the Paraventricular Nucleus of the Hypothalamus. FASEB Journal, 2015, 29, 685.19.	0.5	0
249	Abstract TMP58: Post Stroke Activation of Angiotensin II Type 2 Receptors Shows Sustained Neuroprotective Effects in Aged Rats. Stroke, 2016, 47, .	2.0	0
250	Abstract W P219: Delivery of an Oral Formulation of Angiotensin-(1-7) After Stroke is Neuroprotective. Stroke, 2014, 45, .	2.0	0
251	Abstract TP214: Serum Activity of Angiotensin Converting Enzyme 2 is Decreased During Ischemic Stroke in Humans. Stroke, 2016, 47, .	2.0	0