
Seung-Hwan Oh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7031514/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Waterâ€Soluble Polyfluorenes as an Interfacial Layer Leading to Cathodeâ€Independent High Performance of Organic Solar Cells. Advanced Functional Materials, 2010, 20, 1977-1983.	14.9	195
2	Highâ€Efficiency Photovoltaic Devices using Trapâ€Controlled Quantumâ€Dot Ink prepared via Phaseâ€Transfer Exchange. Advanced Materials, 2017, 29, 1605756.	21.0	114
3	High-Efficiency Colloidal Quantum Dot Photovoltaic Devices Using Chemically Modified Heterojunctions. ACS Energy Letters, 2016, 1, 100-106.	17.4	102
4	Highly efficient inverted bulk-heterojunction solar cells with a gradiently-doped ZnO layer. Energy and Environmental Science, 2016, 9, 240-246.	30.8	93
5	Highly efficient air-stable colloidal quantum dot solar cells by improved surface trap passivation. Nano Energy, 2017, 39, 86-94.	16.0	72
6	Lowâ€īemperatureâ€Processed 9% Colloidal Quantum Dot Photovoltaic Devices through Interfacial Management of p–n Heterojunction. Advanced Energy Materials, 2016, 6, 1502146.	19.5	70
7	Influence of the Ionic Functionalities of Polyfluorene Derivatives as a Cathode Interfacial Layer on Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 6227-6236.	8.0	69
8	Novel cationic water-soluble polyfluorene derivatives with ion-transporting side groups for efficient electron injection in PLEDs. Organic Electronics, 2007, 8, 773-783.	2.6	65
9	Exploration of fabrication methods for planar CH3NH3PbI3 perovskite solar cells. Nano Energy, 2016, 27, 175-184.	16.0	35
10	Improved performance of colloidal quantum dot solar cells using high-electric-dipole self-assembled layers. Nano Energy, 2017, 39, 355-362.	16.0	34
11	Solution-processed colloidal quantum dot/organic hybrid tandem photovoltaic devices with 8.3% efficiency. Nano Energy, 2017, 31, 403-409.	16.0	25
12	Efficient polymer solar cells with a solution-processed gold chloride as an anode interfacial modifier. Applied Physics Letters, 2013, 102, 163302.	3.3	13
13	Synergistic effect of polyurethaneâ€coated carbon fiber and electron beam irradiation on the thermal/mechanical properties and longâ€term durability of polyamideâ€based thermoplastic composites. Polymer Composites, 2022, 43, 1685-1697.	4.6	12
14	Graphene oxide and water-soluble polymer composite materials as efficient hole transporting layer for high performance organic solar cells. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 376-381.	1.8	11
15	Importance of interface engineering between the hole transport layer and the indium-tin-oxide electrode for highly efficient polymer solar cells. Journal of Materials Chemistry A, 2021, 9, 15394-15403.	10.3	10
16	ZnO films using a precursor solution irradiated with an electron beam as the cathode interfacial layer in inverted polymer solar cells. RSC Advances, 2017, 7, 26689-26696.	3.6	9
17	Enhanced performance of perovskite solar cells with solution-processed n-doping of the PCBM interlayer. RSC Advances, 2016, 6, 64962-64966.	3.6	6
18	Gamma-ray irradiated graphene nanosheets/polydopamine hybrids as a superior anode material for lithium-ion batteries. Carbon Letters, 2022, 32, 305.	5.9	3