Chengwu Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7031479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model. Acta Materialia, 2013, 61, 5504-5517.	7.9	156
2	Microstructure prediction of the austenite recrystallization during multi-pass steel strip hot rolling: A cellular automaton modeling. Computational Materials Science, 2008, 44, 507-514.	3.0	109
3	A simulation of dynamic recrystallization by coupling a cellular automaton method with a topology deformation technique. Computational Materials Science, 2008, 41, 366-374.	3.0	84
4	Continuous dynamic recrystallization during the transient deformation in a Ni-30%Fe austenitic model alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 751, 10-14.	5.6	60
5	Numerical simulation of dynamic strain-induced austenite–ferrite transformation in a low carbon steel. Acta Materialia, 2009, 57, 2956-2968.	7.9	59
6	Prediction of post-dynamic austenite-to-ferrite transformation and reverse transformation in a low-carbon steel by cellular automaton modeling. Acta Materialia, 2012, 60, 4768-4779.	7.9	57
7	Mesoscopic modeling of austenite static recrystallization in a low carbon steel using a coupled simulation method. Computational Materials Science, 2009, 45, 568-575.	3.0	49
8	Achieving strength-ductility synergy in cold spray additively manufactured Al/B4C composites through a hybrid post-deposition treatment. Journal of Materials Science and Technology, 2019, 35, 1053-1063.	10.7	46
9	Growth modes of individual ferrite grains in the austenite to ferrite transformation of low carbon steels. Acta Materialia, 2007, 55, 6234-6249.	7.9	39
10	Evolution of twins and sub-boundaries at the early stage of dynamic recrystallization in a Ni-30%Fe austenitic model alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 733, 419-428.	5.6	31
11	On the ferrite refinement during the dynamic strain-induced transformation: A cellular automaton modeling. Scripta Materialia, 2008, 58, 838-841.	5.2	22
12	Strain-rate dependence of the dynamic softening in a duplex stainless steel. Materials Characterization, 2020, 162, 110219.	4.4	19
13	Coupled simulation of ferrite recrystallization in a dual-phase steel considering deformation heterogeneity at mesoscale. Computational Materials Science, 2018, 149, 191-201.	3.0	18
14	Mechanical Properties and Temper Resistance of Deformation Induced Ferrite in a Low Carbon Steel. Journal of Materials Science and Technology, 2010, 26, 1107-1113.	10.7	10
15	Microstructural Depictions of Austenite Dynamic Recrystallization in a Low-Carbon Steel: A Cellular Automaton Model. Acta Metallurgica Sinica (English Letters), 2016, 29, 1127-1135.	2.9	10
16	Cellular automaton modeling of austenite formation from ferrite plus pearlite microstructures during intercritical annealing of a C-Mn steel. Journal of Materials Science and Technology, 2020, 47, 1-9.	10.7	10
17	Phase Characterization and Formation Behavior in 6 wt% Si High-silicon Austenitic Stainless Steel during Isothermal Aging. Acta Metallurgica Sinica (English Letters), 2021, 34, 649-656.	2.9	8
18	Mesoscopic Analysis of Deformation Heterogeneity and Recrystallization Microstructures of a Dual-Phase Steel Using a Coupled Simulation Approach. Acta Metallurgica Sinica (English Letters), 2021, 34, 777-788	2.9	7

#	Article	IF	CITATIONS
19	High-Temperature Plasticity Enhanced by Multiple Secondary Phases in a High-Si Austenitic Stainless Steel. Acta Metallurgica Sinica (English Letters), 2022, 35, 1519-1530.	2.9	2