Pablo PelegrÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7031470/publications.pdf Version: 2024-02-01

PARIO PELECOÃN

#	Article	IF	CITATIONS
1	First Description of <scp>Lateâ€Onset</scp> Autoinflammatory Disease Due to Somatic <scp><i>NLRC4</i></scp> Mosaicism. Arthritis and Rheumatology, 2022, 74, 692-699.	2.9	10
2	Evolutionary analyses of the gasdermin family suggest conserved roles in infection response despite loss of pore-forming functionality. BMC Biology, 2022, 20, 9.	1.7	35
3	Increased expression of the ATPâ€gated P2X7 receptor reduces responsiveness to antiâ€convulsants during status epilepticus in mice. British Journal of Pharmacology, 2022, 179, 2986-3006.	2.7	20
4	Assessment of ASC Oligomerization by Flow Cytometry. Methods in Molecular Biology, 2022, 2459, 1-9.	0.4	2
5	Galvanic current activates the NLRP3 inflammasome to promote Type I collagen production in tendon. ELife, 2022, 11, .	2.8	8
6	NLRP3 and pyroptosis blockers for treating inflammatory diseases. Trends in Pharmacological Sciences, 2022, 43, 653-668.	4.0	193
7	NLRP3 Inflammasome and Pyroptosis in Liver Pathophysiology: The Emerging Relevance of Nrf2 Inducers. Antioxidants, 2022, 11, 870.	2.2	15
8	ASC nanobodies to counteract the consequences of inflammasome activation. EMBO Molecular Medicine, 2022, 14, e16087.	3.3	2
9	Physiological and pathophysiological functions of NLRP6: pro- and anti-inflammatory roles. Communications Biology, 2022, 5, .	2.0	17
10	Characterization of Novel Pathogenic Variants Leading to Caspase-8 Cleavage-Resistant RIPK1-Induced Autoinflammatory Syndrome. Journal of Clinical Immunology, 2022, 42, 1421-1432.	2.0	8
11	Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis. Journal of Hepatology, 2021, 74, 156-167.	1.8	264
12	Aquaporin-3 is involved in NLRP3-inflammasome activation contributing to the setting of inflammatory response. Cellular and Molecular Life Sciences, 2021, 78, 3073-3085.	2.4	34
13	Emerging Role of the Inflammasome and Pyroptosis in Hypertension. International Journal of Molecular Sciences, 2021, 22, 1064.	1.8	59
14	Techniques to Study Inflammasome Activation and Inhibition by Small Molecules. Molecules, 2021, 26, 1704.	1.7	11
15	P2X7 receptor and the NLRP3 inflammasome: Partners in crime. Biochemical Pharmacology, 2021, 187, 114385.	2.0	84
16	NLRP3 at the crossroads between immune/inflammatory responses and enteric neuroplastic remodelling in a mouse model of dietâ€induced obesity. British Journal of Pharmacology, 2021, 178, 3924-3942.	2.7	9
17	Gasdermins mediate cellular release of mitochondrial DNA during pyroptosis and apoptosis. FASEB Journal, 2021, 35, e21757.	0.2	44
18	Extracellular NLRP3 inflammasome particles are internalized by human coronary artery smooth muscle cells and induce pro-atherogenic effects. Scientific Reports, 2021, 11, 15156.	1.6	8

#	Article	IF	CITATIONS
19	Pyroptosis and Redox Balance in Kidney Diseases. Antioxidants and Redox Signaling, 2021, 35, 40-60.	2.5	26
20	Sensing low intracellular potassium by NLRP3 results in a stable open structure that promotes inflammasome activation. Science Advances, 2021, 7, eabf4468.	4.7	65
21	Identification of an ASC oligomerization inhibitor for the treatment of inflammatory diseases. Cell Death and Disease, 2021, 12, 1155.	2.7	27
22	NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell, 2021, 184, 6299-6312.e22.	13.5	120
23	The gasdermins, a protein family executing cell death and inflammation. Nature Reviews Immunology, 2020, 20, 143-157.	10.6	881
24	Isolation of functional mature peritoneal macrophages from healthy humans. Immunology and Cell Biology, 2020, 98, 114-126.	1.0	14
25	Cardiolipin in Immune Signaling and Cell Death. Trends in Cell Biology, 2020, 30, 892-903.	3.6	75
26	Severe Autoinflammatory Manifestations and Antibody Deficiency Due to Novel Hypermorphic PLCG2 Mutations. Journal of Clinical Immunology, 2020, 40, 987-1000.	2.0	41
27	RACK1 Mediates NLRP3 Inflammasome Activation by Promoting NLRP3 Active Conformation and Inflammasome Assembly. Cell Reports, 2020, 33, 108405.	2.9	44
28	Extracellular Granzyme A Promotes Colorectal Cancer Development by Enhancing Gut Inflammation. Cell Reports, 2020, 32, 107847.	2.9	34
29	Signaling Through Purinergic Receptor P2Y2 Enhances Macrophage IL-1Î ² Production. International Journal of Molecular Sciences, 2020, 21, 4686.	1.8	16
30	NLRP3 inflammasome as prognostic factor and therapeutic target in primary progressive multiple sclerosis patients. Brain, 2020, 143, 1414-1430.	3.7	92
31	Detection of Inflammasome Activation by P2X7 Purinoceptor Activation by Determining ASC Oligomerization. Methods in Molecular Biology, 2020, 2041, 335-343.	0.4	4
32	CD14 release induced by P2X7 receptor restricts inflammation and increases survival during sepsis. ELife, 2020, 9, .	2.8	26
33	Assessment of Cell Adhesion After Purinoceptor Activation. Methods in Molecular Biology, 2020, 2041, 351-358.	0.4	1
34	Extracellular adenosine reversibly inhibits the activation of human regulatory T cells and negatively influences the achievement of the operational tolerance in liver transplantation. American Journal of Transplantation, 2019, 19, 48-61.	2.6	19
35	WDR90 is a new component of the NLRC4 inflammasome involved in Salmonella Typhimurium resistance. Developmental and Comparative Immunology, 2019, 100, 103428.	1.0	6
36	Editorial overview: Purinergic P2X receptors in innate immunity and inflammation. Current Opinion in Pharmacology, 2019, 47, 141-144.	1.7	4

#	Article	IF	CITATIONS
37	P2X7 receptor induces mitochondrial failure in monocytes and compromises NLRP3 inflammasome activation during sepsis. Nature Communications, 2019, 10, 2711.	5.8	148
38	Saturation of acyl chains converts cardiolipin from an antagonist to an activator of Toll-like receptor-4. Cellular and Molecular Life Sciences, 2019, 76, 3667-3678.	2.4	31
39	MCC950 closes the active conformation of NLRP3 to an inactive state. Nature Chemical Biology, 2019, 15, 560-564.	3.9	282
40	3D chitosan scaffolds impair NLRP3 inflammasome response in macrophages. Acta Biomaterialia, 2019, 91, 123-134.	4.1	26
41	Early endosome autoantigen 1 regulates IL-1β release upon caspase-1 activation independently of gasdermin D membrane permeabilization. Scientific Reports, 2019, 9, 5788.	1.6	22
42	Purinergic receptors and the inflammatory response mediated by lipids. Current Opinion in Pharmacology, 2019, 47, 90-96.	1.7	17
43	The inflammasome in host response to biomaterials: Bridging inflammation and tissue regeneration. Acta Biomaterialia, 2019, 83, 1-12.	4.1	84
44	Integrated Transcriptomic and Proteomic Analyses of Inflammasome in Myelodysplastic Syndromes and Chronic Myelomonocytic Leukemia. Blood, 2019, 134, 2991-2991.	0.6	0
45	Ion homeostasis and ion channels in NLRP3 inflammasome activation and regulation. Current Opinion in Immunology, 2018, 52, 8-17.	2.4	64
46	Methods to Study Cell Swelling-Induced Inflammasome Activation. Methods in Molecular Biology, 2018, 1714, 191-197.	0.4	1
47	NLRP3 lacking the leucine-rich repeat domain can be fully activated via the canonical inflammasome pathway. Nature Communications, 2018, 9, 5182.	5.8	102
48	Chloride regulates dynamic NLRP3-dependent ASC oligomerization and inflammasome priming. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9371-E9380.	3.3	131
49	Editorial overview: Ion channels and immune cells: What ions could do for immune cells. Current Opinion in Immunology, 2018, 52, vi-viii.	2.4	0
50	NLRP3 inflammasome activation in hepatocytes results in pyroptotic cell death, release of NLRP3 particles and liver fibrosis. Journal of Hepatology, 2018, 68, S31-S32.	1.8	0
51	Development of an Acrylate Derivative Targeting the NLRP3 Inflammasome for the Treatment of Inflammatory Bowel Disease. Journal of Medicinal Chemistry, 2017, 60, 3656-3671.	2.9	131
52	Inflammasomes in Liver Fibrosis. Seminars in Liver Disease, 2017, 37, 119-127.	1.8	143
53	Lipin-2 regulates NLRP3 inflammasome by affecting P2X7 receptor activation. Journal of Experimental Medicine, 2017, 214, 511-528.	4.2	92
54	A novel Pyrin-Associated Autoinflammation with Neutrophilic Dermatosis mutation further defines 14-3-3 binding of pyrin and distinction to Familial Mediterranean Fever. Annals of the Rheumatic Diseases, 2017, 76, 2085-2094.	0.5	118

#	Article	IF	CITATIONS
55	An emerging case for membrane pore formation as a common mechanism for the unconventional secretion of FGF2 and IL-1Î ² . Journal of Cell Science, 2017, 130, 3197-3202.	1.2	39
56	Reprogramming macrophages by plasmin. Blood, 2017, 129, 2823-2824.	0.6	3
57	Lytic cell death induced by melittin bypasses pyroptosis but induces NLRP3 inflammasome activation and IL-1β release. Cell Death and Disease, 2017, 8, e2984-e2984.	2.7	34
58	Extracellular ATP Activates the NLRP3 Inflammasome and Is an Early Danger Signal of Skin Allograft Rejection. Cell Reports, 2017, 21, 3414-3426.	2.9	126
59	The NLRP3 and Pyrin Inflammasomes: Implications in the Pathophysiology of Autoinflammatory Diseases. Frontiers in Immunology, 2017, 8, 43.	2.2	176
60	P2X7 Receptor Induces Tumor Necrosis Factor-α Converting Enzyme Activation and Release to Boost TNF-α Production. Frontiers in Immunology, 2017, 8, 862.	2.2	49
61	Late-Onset Cryopyrin-Associated Periodic Syndromes Caused by Somatic NLRP3 Mosaicism—UK Single Center Experience. Frontiers in Immunology, 2017, 8, 1410.	2.2	109
62	Ion Channels in Inflammatory Processes: What Is Known and What Is Next?. Mediators of Inflammation, 2016, 2016, 1-1.	1.4	7
63	M1 and M2 Functional Imprinting of Primary Microglia: Role of P2X7 Activation and miR-125b. Mediators of Inflammation, 2016, 2016, 1-9.	1.4	43
64	Brief Report: Lateâ€Onset Cryopyrinâ€Associated Periodic Syndrome Due to Myeloidâ€Restricted Somatic <i>NLRP3</i> Mosaicism. Arthritis and Rheumatology, 2016, 68, 3035-3041.	2.9	72
65	Involvement of P2X7 receptor in neuronal degeneration triggered by traumatic injury. Scientific Reports, 2016, 6, 38499.	1.6	23
66	SCN4B acts as a metastasis-suppressor gene preventing hyperactivation of cell migration in breast cancer. Nature Communications, 2016, 7, 13648.	5.8	57
67	Measuring NLR Oligomerization III: Detection of NLRP3 Complex by Bioluminescence Resonance Energy Transfer. Methods in Molecular Biology, 2016, 1417, 159-168.	0.4	14
68	Measuring IL-1β Processing by Bioluminescence Sensors I: Using a Bioluminescence Resonance Energy Transfer Biosensor. Methods in Molecular Biology, 2016, 1417, 89-95.	0.4	3
69	The inflammasome pathway in stable COPD and acute exacerbations. ERJ Open Research, 2016, 2, 00002-2016.	1.1	47
70	Neutrophils mediate Salmonella Typhimurium clearance through the GBP4 inflammasome-dependent production of prostaglandins. Nature Communications, 2016, 7, 12077.	5.8	109
71	Macrophage activation and polarization modify P2X7 receptor secretome influencing the inflammatory process. Scientific Reports, 2016, 6, 22586.	1.6	109
72	Involvement of the P2X7-NLRP3 axis in leukemic cell proliferation and death. Scientific Reports, 2016, 6, 26280.	1.6	47

#	Article	IF	CITATIONS
73	Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nature Immunology, 2016, 17, 1037-1045.	7.0	259
74	Inflammasome-dependent IL-1β release depends upon membrane permeabilisation. Cell Death and Differentiation, 2016, 23, 1219-1231.	5.0	214
75	Purinergic signaling during macrophage differentiation results in M2 alternative activated macrophages. Journal of Leukocyte Biology, 2016, 99, 289-299.	1.5	35
76	Apoptosis-Associated Speck-like Protein Containing a CARD Forms Specks but Does Not Activate Caspase-1 in the Absence of NLRP3 during Macrophage Swelling. Journal of Immunology, 2015, 194, 1261-1273.	0.4	83
77	AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4050-4055.	3.3	211
78	Understanding the roles of the P2X7 receptor in solid tumour progression and therapeutic perspectives. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2584-2602.	1.4	80
79	Isolation of Particles of Recombinant ASC and NLRP3. Bio-protocol, 2015, 5, .	0.2	9
80	ATP Modulates Acute Inflammation In Vivo through Dual Oxidase 1–Derived H2O2 Production and NF-κB Activation. Journal of Immunology, 2014, 192, 5710-5719.	0.4	66
81	The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nature Immunology, 2014, 15, 738-748.	7.0	668
82	P2X7 receptors mediate resistance to toxin-induced cell lysis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 915-922.	1.9	19
83	Response to Boyle etÂal Immunity, 2013, 38, 400-401.	6.6	1
84	The participation of plasma membrane hemichannels to purinergic signaling. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 79-93.	1.4	151
85	P2X7 Receptor Activation Impairs Exogenous MHC Class I Oligopeptides Presentation in Antigen Presenting Cells. PLoS ONE, 2013, 8, e70577.	1.1	9
86	2-Methoxyestradiol in the Pathophysiology of Endometriosis: Focus on Angiogenesis and Therapeutic Potential. Reproductive Sciences, 2012, 19, 1018-1029.	1.1	22
87	A Genetically Encoded IL-1β Bioluminescence Resonance Energy Transfer Sensor To Monitor Inflammasome Activity. Journal of Immunology, 2012, 189, 2131-2137.	0.4	26
88	Cell Volume Regulation Modulates NLRP3 Inflammasome Activation. Immunity, 2012, 37, 487-500.	6.6	326
89	Current status of inflammasome blockers as anti-inflammatory drugs. Expert Opinion on Investigational Drugs, 2012, 21, 995-1007.	1.9	67
90	Modulating P2X7 Receptor Signaling during Rheumatoid Arthritis: New Therapeutic Approaches for Bisphosphonates. Journal of Osteoporosis, 2012, 2012, 1-7.	0.1	34

Pablo PelegrÃn

#	Article	IF	CITATIONS
91	P2X7 receptorâ€stimulation causes fever <i>via</i> PGE2 and ILâ€1β release. FASEB Journal, 2012, 26, 2951-2962.	0.2	123
92	P2X7 receptor antagonism in the treatment of cancers. Expert Opinion on Investigational Drugs, 2011, 20, 875-880.	1.9	58
93	Many ways to dilate the P2X7 receptor pore. British Journal of Pharmacology, 2011, 163, 908-911.	2.7	63
94	P2X7 receptor activation enhances SK3 channels- and cystein cathepsin-dependent cancer cells invasiveness. Oncogene, 2011, 30, 2108-2122.	2.6	180
95	Novel macrophage polarization model: from gene expression to identification of new anti-inflammatory molecules. Cellular and Molecular Life Sciences, 2011, 68, 3095-3107.	2.4	72
96	P2X7 Receptor-Dependent Intestinal Afferent Hypersensitivity in a Mouse Model of Postinfectious Irritable Bowel Syndrome. Journal of Immunology, 2011, 187, 1467-1474.	0.4	51
97	Inflammasome Activation by Danger Signals. , 2011, , 101-121.		4
98	P2X7 Receptor-Mediated Release of Cathepsins from Macrophages Is a Cytokine-Independent Mechanism Potentially Involved in Joint Diseases. Journal of Immunology, 2010, 185, 2611-2619.	0.4	99
99	C-terminal Calmodulin-binding Motif Differentially Controls Human and Rat P2X7 Receptor Current Facilitation. Journal of Biological Chemistry, 2010, 285, 17514-17524.	1.6	60
100	Pharmacological Characterization of Pannexin-1 Currents Expressed in Mammalian Cells. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 409-418.	1.3	243
101	Pannexinâ€lâ€dependent caspaseâ€l activation and secretion of ILâ€lβ is regulated by zinc. European Journal o Immunology, 2009, 39, 352-358.	f 1.6	52
102	The P2X7 receptor–pannexin connection to dye uptake and IL-1β release. Purinergic Signalling, 2009, 5, 129-137.	1.1	157
103	Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1Î ² release through pyrophosphates. EMBO Journal, 2009, 28, 2114-2127.	3.5	236
104	Molecular and functional characterization of gilthead seabream Sparus aurata caspase-1: The first identification of an inflammatory caspase in fish. Molecular Immunology, 2008, 45, 49-57.	1.0	59
105	Facilitation of P2X7 Receptor Currents and Membrane Blebbing via Constitutive and Dynamic Calmodulin Binding. Journal of Neuroscience, 2008, 28, 6393-6401.	1.7	109
106	P2X7 Receptor Differentially Couples to Distinct Release Pathways for IL-1β in Mouse Macrophage. Journal of Immunology, 2008, 180, 7147-7157.	0.4	377
107	Targeting Interleukin-1 Signaling in Chronic Inflammation: Focus on P2X7 Receptor and Pannexin-1. , 2008, 21, 424.		58
108	Pannexin-1 Couples to Maitotoxin- and Nigericin-induced Interleukin-1β Release through a Dye Uptake-independent Pathway. Journal of Biological Chemistry, 2007, 282, 2386-2394.	1.6	267

#	Article	IF	CITATIONS
109	Intestinal secretory and absorptive function in Trichinella spiralis mouse model of postinfective gut dysfunction: role of bile acids. Gut, 2007, 57, 41-49.	6.1	17
110	Amino Acid Residues in the P2X7 Receptor that Mediate Differential Sensitivity to ATP and BzATP. Molecular Pharmacology, 2007, 71, 92-100.	1.0	98
111	Identification of Thr283 as a key determinant of P2X7 receptor function. British Journal of Pharmacology, 2006, 149, 261-268.	2.7	46
112	Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO Journal, 2006, 25, 5071-5082.	3.5	1,261
113	Early innate immune response and redistribution of inflammatory cells in the bony fish gilthead seabream experimentally infected with Vibrio anguillarum. Cell and Tissue Research, 2005, 320, 61-68.	1.5	126
114	Acidophilic granulocytes of the marine fish gilthead seabream (Sparus aurata L.) produce interleukin-1ïż½ following infection with Vibrio anguillarum. Cell and Tissue Research, 2004, 316, 189-195.	1.5	58
115	The tumor necrosis factor a of the bony fish seabream exhibits the in vivo proinflammatory and proliferative activities of its mammalian counterparts, yet it functions in a species-specific manner. Cellular and Molecular Life Sciences, 2004, 61, 1331-1340.	2.4	77
116	Production and mechanism of secretion of interleukin-1β from the marine fish gilthead seabream. Developmental and Comparative Immunology, 2004, 28, 229-237.	1.0	79
117	A role for acidophilic granulocytes in the testis of the gilthead seabream (Sparus aurata L., Teleostei). Journal of Endocrinology, 2003, 179, 165-174.	1.2	56
118	Molecular cloning and expression analysis of tumor necrosis factor \hat{I}_{\pm} from a marine fish reveal its constitutive expression and ubiquitous nature. Immunogenetics, 2002, 54, 200-207.	1.2	126
119	Characterisation of gilthead seabream acidophilic granulocytes by a monoclonal antibody unequivocally points to their involvement in fish phagocytic response. Cell and Tissue Research, 2002, 308, 97-102.	1.5	118
120	INTERLEUKIN-1 $\hat{1}^2$ ISOLATED FROM A MARINE FISH REVEALS UP-REGULATED EXPRESSION IN MACROPHAGES FOLLOWING ACTIVATION WITH LIPOPOLYSACCHARIDE AND LYMPHOKINES. Cytokine, 2001, 16, 67-72.	1.4	83
121	Phylogeny of cytokines: molecular cloning and expression analysis of sea bass Dicentrarchus labrax interleukin-11². Fish and Shellfish Immunology, 2001, 11, 711-726.	1.6	140
122	A fish cell surface receptor defined by a mAb mediates leukocyte aggregation and deactivation. Developmental and Comparative Immunology, 2001, 25, 619-627.	1.0	28
123	Soluble P2X7 Receptor Is Elevated in the Plasma of COVID-19 Patients and Correlates With Disease Severity. Frontiers in Immunology, 0, 13, .	2.2	19