
Richard I Walton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7031019/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Hydrothermal Synthesis and Physical Properties of Rare-Earth and Yttrium Orthochromite Perovskites. Chemistry of Materials, 2011, 23, 48-56.	3.2	152
2	A study of the manganites La0.5M0.5MnO3(M = Ca, Sr, Ba) prepared by hydrothermal synthesis. Journal of Materials Chemistry, 2005, 15, 1542.	6.7	94
3	A technical review of optical mapping of intracellular calcium within myocardial tissue. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1388-H1401.	1.5	67
4	Localized Structural Alterations Underlying a Subset of Unexplained Sudden Cardiac Death. Circulation: Arrhythmia and Electrophysiology, 2018, 11, e006120.	2.1	67
5	Perovskite Oxides Prepared by Hydrothermal and Solvothermal Synthesis: A Review of Crystallisation, Chemistry, and Compositions. Chemistry - A European Journal, 2020, 26, 9041-9069.	1.7	59
6	Cardiac electrical dyssynchrony is accurately detected by noninvasive electrocardiographic imaging. Heart Rhythm, 2018, 15, 1058-1069.	0.3	53
7	Depolarization versus repolarization abnormality underlying inferolateral J-wave syndromes: New concepts in sudden cardiac death with apparently normal hearts. Heart Rhythm, 2019, 16, 781-790.	0.3	52
8	Structures and Magnetism of the Rare-Earth Orthochromite Perovskite Solid Solution La _{<i>x</i>} Sm _{1–<i>x</i>} CrO ₃ . Inorganic Chemistry, 2013, 52, 12161-12169.	1.9	50
9	Quantification of the Transmural Dynamics of Atrial Fibrillation by Simultaneous Endocardial and Epicardial Optical Mapping in an Acute Sheep Model. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 456-465.	2.1	44
10	An activation-repolarization time metric to predict localized regions of high susceptibility to reentry. Heart Rhythm, 2015, 12, 1644-1653.	0.3	40
11	Feasibility of a semi-automated method for cardiac conduction velocity analysis of high-resolution activation maps. Computers in Biology and Medicine, 2015, 65, 177-183.	3.9	40
12	Dual excitation wavelength epifluorescence imaging of transmural electrophysiological properties in intact hearts. Heart Rhythm, 2010, 7, 1843-1849.	0.3	36
13	Construction and validation of anisotropic and orthotropic ventricular geometries for quantitative predictive cardiac electrophysiology. Interface Focus, 2011, 1, 101-116.	1.5	31
14	Influence of the Purkinje-muscle junction on transmural repolarization heterogeneity. Cardiovascular Research, 2014, 103, 629-640.	1.8	30
15	Extracting Surface Activation Time from the Optically Recorded Action Potential in Three-Dimensional Myocardium. Biophysical Journal, 2012, 102, 30-38.	0.2	25
16	Transmural electrophysiological heterogeneity, the T-wave and ventricular arrhythmias. Progress in Biophysics and Molecular Biology, 2016, 122, 202-214.	1.4	25
17	Electrophysiological and structural determinants of electrotonic modulation of repolarization by the activation sequence. Frontiers in Physiology, 2013, 4, 281.	1.3	24
18	Compartmentalized Structure of the Moderator Band Provides a Unique Substrate for Macroreentrant Ventricular Tachycardia. Circulation: Arrhythmia and Electrophysiology, 2018, 11, e005913.	2.1	22

RICHARD I WALTON

#	Article	IF	CITATIONS
19	Effects of ECG Signal Processing on the Inverse Problem of Electrocardiography. , 2018, 45, .		15
20	Local Aâ€5ite Layering in Rareâ€Earth Orthochromite Perovskites by Solution Synthesis. Chemistry - A European Journal, 2016, 22, 18362-18367.	1.7	14
21	Role of the Purkinje-Muscle Junction on the Ventricular Repolarization Heterogeneity in the Healthy and Ischemic Ovine Ventricular Myocardium. Frontiers in Physiology, 2018, 9, 718.	1.3	14
22	Wide-area low-energy surface stimulation of large mammalian ventricular tissue. Scientific Reports, 2019, 9, 15863.	1.6	11
23	Optical Imaging of Ventricular Action Potentials in a Torso Tank: A New Platform for Non-Invasive Electrocardiographic Imaging Validation. Frontiers in Physiology, 2019, 10, 146.	1.3	10
24	Towards Depth-Resolved Optical Imaging of Cardiac Electrical Activity. Advances in Experimental Medicine and Biology, 2015, 859, 405-423.	0.8	8
25	Clinical Potential of Beatâ€ŧoâ€Beat Diastolic Interval Control in Preventing Cardiac Arrhythmias. Journal of the American Heart Association, 2021, 10, e020750.	1.6	8
26	3D magnetization transfer (MT) for the visualization of cardiac free-running Purkinje fibers: an ex vivo proof of concept. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2021, 34, 605-618.	1.1	4
27	Low-energy, single-pulse surface stimulation defibrillates large mammalian ventricles. Heart Rhythm, 2022, 19, 308-317.	0.3	4
28	Advances in Cardiac Pacing: Arrhythmia Prediction, Prevention and Control Strategies. Frontiers in Physiology, 2021, 12, 783241.	1.3	4
29	A novel approach for deriving global activation maps from non-averaged cardiac optical signals. , 2013, 2013, 1772-5.		3
30	Stretchable Conductive Fabric for Cardiac Electrophysiology Applications. ACS Applied Bio Materials, 2020, 3, 3114-3122.	2.3	3
31	Slowed propagation across the compacta-trabeculata interface: A consequence of fiber and sheet anisotropy. , 2011, 2011, 1688-92.		1
32	K 2p 3.1 protein is expressed as a transmural gradient across the rat left ventricular free wall. Journal of Cardiovascular Electrophysiology, 2019, 30, 383-391.	0.8	1