
Li-Min Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7030943/publications.pdf Version: 2024-02-01

ЦьМім 7нц

#	Article	IF	CITATIONS
1	Enhancing electrochemical performances of small quinone toward lithium and sodium energy storage. Rare Metals, 2022, 41, 425-437.	7.1	28
2	The improved cycling stability and rate capability of Nb-doped NaV3O8 cathode for sodium-ion batteries. Journal of Alloys and Compounds, 2022, 890, 161885.	5.5	11
3	Cathode materials for aqueous zinc-ion batteries: A mini review. Journal of Colloid and Interface Science, 2022, 605, 828-850.	9.4	92
4	New Insight on K ₂ Zn ₂ V ₁₀ O ₂₈ as an Advanced Cathode for Rechargeable Aqueous Zincâ€ion Batteries. Small, 2022, 18, e2107102.	10.0	57
5	Facile synthesis of nanorods Na2Ti6O13 as anode materials for high-performance sodium ion batteries. Journal of Alloys and Compounds, 2022, 906, 164306.	5.5	8
6	Recent Developments and Challenges of Vanadium Oxides (V _{<i>x</i>} O _{<i>y</i>}) Cathodes for Aqueous Zincâ€ion Batteries. Chemical Record, 2022, 22, e202100275.	5.8	20
7	Research on the electrochemical performance of polyoxovanadate material K4Na2V10O28 as a novel aqueous zinc-ion batteries cathode. Electrochimica Acta, 2022, 424, 140621.	5.2	11
8	Revealing the unique process of alloying reaction in Ni-Co-Sb/C nanosphere anode for high-performance lithium storage. Journal of Colloid and Interface Science, 2021, 586, 730-740.	9.4	24
9	Rare earth metal La-doped induced electrochemical evolution of LiV ₃ O ₈ with an oxygen vacancy toward a high energy-storage capacity. Journal of Materials Chemistry A, 2021, 9, 1845-1858.	10.3	27
10	<scp> Na ₃ V ₂ </scp> (<scp> PO ₄ </scp>) ₃ /C composites as lowâ€cost and highâ€performance cathode materials for sodiumâ€ion batteries. International Journal of Energy Research, 2021, 45, 4534-4542.	4.5	12
11	Nitrogen-doped carbon-coated Li3V2(PO4)3 as cathode materials for high-performance lithium storage. lonics, 2021, 27, 507-515.	2.4	11
12	Liquid Alloy Interlayer for Aqueous Zinc-Ion Battery. ACS Energy Letters, 2021, 6, 675-683.	17.4	135
13	Electrochemically inert aluminum cations coordinated with tetrahydroxybenzoquinone toward high-energy storage. ACS Applied Energy Materials, 2021, 4, 8538-8549.	5.1	2
14	Tailoring Oxygen Site Defects of Vanadium-Based Materials through Bromine Anion Doping for Advanced Energy Storage. ACS Applied Energy Materials, 2021, 4, 10783-10798.	5.1	4
15	Poly(1,5-anthraquinonyl sulfide)/reduced graphene oxide composites towards high Li and Na storage both in half- and full-cells. Electrochimica Acta, 2021, 394, 139116.	5.2	6
16	LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ /polypyrrole composites as cathode materials for highâ€performance lithiumâ€ion batteries. International Journal of Energy Research, 2020, 44, 298-308.	4.5	29
17	Wetâ€chemistry synthesis of Li ₄ Ti ₅ O ₁₂ as anode materials rendering highâ€rate Liâ€ion storage. International Journal of Energy Research, 2020, 44, 4211-4223.	4.5	27
18	Facile preparation of NaV ₃ O ₈ /polytriphenylamine composites as cathode materials towards highâ€performance sodium storage. International Journal of Energy Research, 2020, 44, 3215-3223.	4.5	15

Li-Мім Zhu

#	Article	IF	CITATIONS
19	Enhancing Lithium Storage Performances of the Li ₄ Ti ₅ O ₁₂ Anode by Introducing the CuV ₂ O ₆ Phase. ACS Applied Materials & Interfaces, 2020, 12, 39170-39180.	8.0	27
20	Catalyst and additive-free oxidative dual C–H sulfenylation of imidazoheterocycles with elemental sulfur using DMSO as a solvent and an oxidant. Chemical Communications, 2020, 56, 5751-5754.	4.1	29
21	NaV3O8/poly(3,4-ethylenedioxythiophene) composites as high-rate and long-lifespan cathode materials for reversible sodium storage. Rare Metals, 2020, 39, 865-873.	7.1	30
22	Na ₃ V ₂ (PO ₄) ₃ @NC composite derived from polyaniline as cathode material for highâ€rate and ultralongâ€life sodiumâ€ion batteries. International Journal of Energy Research, 2020, 44, 4586-4594.	4.5	39
23	Grapheneâ€wrapped poly(2,5â€dihydroxyâ€1,4â€benzoquinoneâ€3,6â€methylene) nanoflowers as lowâ€cost an highâ€performance cathode materials for sodiumâ€ion batteries. International Journal of Energy Research, 2019, 43, 7635.	d 4.5	20
24	Conjugated Carbonyl Compounds as High-Performance Cathode Materials for Rechargeable Batteries. Chemistry of Materials, 2019, 31, 8582-8612.	6.7	163
25	Ethylene Glycolâ€Assisted Solâ€Gel Method for Preparing LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ as Cathode Material for Lithiumâ€ion Batteries with Excellent Electrochemical Performance. ChemistrySelect, 2019, 4, 11475-11482.	1.5	15
26	A multifunctional self-healing G-PyB/KCl hydrogel: smart conductive, rapid room-temperature phase-selective gelation, and ultrasensitive detection of alpha-fetoprotein. Chemical Communications, 2019, 55, 7922-7925.	4.1	94
27	Rod-like NaV3O8 as cathode materials with high capacity and stability for sodium storage. Chemical Engineering Journal, 2019, 372, 1056-1065.	12.7	56
28	ZIF-67-Derived N-Doped Co/C Nanocubes as High-Performance Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 16619-16628.	8.0	191
29	The bond evolution mechanism of covalent sulfurized carbon during electrochemical sodium storage process. Science China Materials, 2019, 62, 1127-1138.	6.3	58
30	Na3V2(PO4)3 nanoparticles confined in functional carbon framework towards high-rate and ultralong-life sodium storage. Journal of Alloys and Compounds, 2019, 791, 296-306.	5.5	30
31	Anthraquinones with Ionizable Sodium Sulfonate Groups as Renewable Cathode Materials for Sodiumâ€lon Batteries. ChemElectroChem, 2019, 6, 787-792.	3.4	23
32	Polymer Electrode Materials for Highâ€Performance Lithium/Sodiumâ€ŀon Batteries: A Review. Energy Technology, 2019, 7, 1800759.	3.8	35
33	LiV ₃ O ₈ /Polydiphenylamine Composites with Significantly Improved Electrochemical Behavior as Cathode Materials for Rechargeable Lithium Batteries. ACS Applied Materials & Interfaces, 2018, 10, 10909-10917.	8.0	43
34	NaV3O8 with superior rate capability and cycle stability as cathode materials for sodium-ion batteries. lonics, 2018, 24, 943-949.	2.4	14
35	Stabilization of LiV ₃ O ₈ Rodâ€like Structure by Protective Mg ₃ (PO ₄) ₂ Layer for Advanced Lithium Storage Cathodes. Energy Technology, 2018, 6, 2479-2487.	3.8	13
36	Hollow-sphere ZnSe wrapped around carbon particles as a cycle-stable and high-rate anode material for reversible Li-ion batteries. New Journal of Chemistry, 2017, 41, 6693-6699.	2.8	40

Li-Мім Zhu

#	Article	IF	CITATIONS
37	Synthesis and electrochemical performances of LiV3O8/poly (3, 4-ethylenedioxythiophene) composites as cathode materials for rechargeable lithium batteries. Solid State Ionics, 2017, 310, 30-37.	2.7	19
38	LiV 3 O 8 /poly(1,5-diaminoanthraquinone) composite as a high performance cathode material for rechargeable lithium batteries. Materials Letters, 2017, 206, 225-228.	2.6	10
39	LiV3O8/Polytriphenylamine Composites with Enhanced Electrochemical Performances as Cathode Materials for Rechargeable Lithium Batteries. Materials, 2017, 10, 344.	2.9	16
40	Preparation and Electrochemical Properties of Li3V2(PO4)3â^'xBrx/Carbon Composites as Cathode Materials for Lithium-Ion Batteries. Nanomaterials, 2017, 7, 52.	4.1	14
41	Preparation and electrochemical performances of rod-like LiV3O8/carbon composites using polyaniline as carbon source. Electronic Materials Letters, 2015, 11, 650-657.	2.2	5
42	Self-doped polypyrrole with ionizable sodium sulfonate as a renewable cathode material for sodium ion batteries. Chemical Communications, 2013, 49, 11370.	4.1	89
43	Fe(CN)6â^'4-doped polypyrrole: a high-capacity and high-rate cathode material for sodium-ion batteries. RSC Advances, 2012, 2, 5495.	3.6	64
44	A positive-temperature-coefficient electrode with thermal protection mechanism for rechargeable lithium batteries. Science Bulletin, 2012, 57, 4205-4209.	1.7	31
45	A Novel Strategy toward Highâ€₽erformance Lithium Storage of Li 4 Ti 5 O 12 Using Cu 2 V 2 O 7 as Additive. Energy Technology, 0, , 2100834.	3.8	1