Gregory H Imler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7030853/publications.pdf

Version: 2024-02-01

		159358	214527
65	2,562 citations	30	47
papers	citations	h-index	g-index
CF	CE	CE	800
65	65	65	809
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Conjugated Energetic Salts Based on Fused Rings: Insensitive and Highly Dense Materials. Journal of the American Chemical Society, 2018, 140, 15001-15007.	6.6	134
2	Nitrogen-Rich Tetrazolo[1,5- <i>b</i>)pyridazine: Promising Building Block for Advanced Energetic Materials. Journal of the American Chemical Society, 2020, 142, 3652-3657.	6.6	132
3	Aminonitro Groups Surrounding a Fused Pyrazolotriazine Ring: A Superior Thermally Stable and Insensitive Energetic Material. ACS Applied Energy Materials, 2019, 2, 2263-2267.	2.5	111
4	Pushing the Limits of Oxygen Balance in 1,3,4-Oxadiazoles. Journal of the American Chemical Society, 2017, 139, 8816-8819.	6.6	106
5	Enforced Planar FOX-7-like Molecules: A Strategy for Thermally Stable and Insensitive π-Conjugated Energetic Materials. Journal of the American Chemical Society, 2020, 142, 7153-7160.	6.6	95
6	Polynitroâ€Functionalized Dipyrazoloâ€1,3,5â€triazinanes: Energetic Polycyclization toward High Density and Excellent Molecular Stability. Angewandte Chemie - International Edition, 2017, 56, 8834-8838.	7.2	91
7	A Highly Stable and Insensitive Fused Triazolo–Triazine Explosive (TTX). Chemistry - A European Journal, 2017, 23, 1743-1747.	1.7	83
8	Multipurpose [1,2,4]triazolo[4,3- <i>b</i>)[1,2,4,5] tetrazine-based energetic materials. Journal of Materials Chemistry A, 2019, 7, 7875-7884.	5.2	83
9	Boosting energetic performance by trimerizing furoxan. Journal of Materials Chemistry A, 2018, 6, 9391-9396.	5.2	73
10	Energetic salts of 4-nitramino-3-(5-dinitromethyl-1,2,4-oxadiazolyl)-furazan: powerful alliance towards good thermal stability and high performance. Journal of Materials Chemistry A, 2018, 6, 16833-16837.	5.2	64
11	5-(Dinitromethyl)-3-(trinitromethyl)-1,2,4-triazole and its derivatives: a new application of oxidative nitration towards <i>gem</i> -trinitro-based energetic materials. Journal of Materials Chemistry A, 2017, 5, 4785-4790.	5.2	61
12	Fused rings with <i>N</i> -oxide and –NH ₂ : good combination for high density and low sensitivity energetic materials. Chemical Communications, 2019, 55, 8979-8982.	2.2	59
13	Aminoacetonitrile as precursor for nitrogen rich stable and insensitive asymmetric N-methylene-C linked tetrazole-based energetic compounds. Journal of Materials Chemistry A, 2017, 5, 16767-16775.	5.2	54
14	Polycyclic <i>N</i> -oxides: high performing, low sensitivity energetic materials. Chemical Communications, 2019, 55, 2461-2464.	2.2	53
15	Iodobenzene-Catalyzed Synthesis of Phenanthridinones via Oxidative C–H Amidation. Journal of Organic Chemistry, 2017, 82, 3589-3596.	1.7	52
16	Efficient Construction of Energetic Materials via Nonmetallic Catalytic Carbon–Carbon Cleavage/Oxime-Release-Coupling Reactions. Journal of the American Chemical Society, 2018, 140, 3560-3563.	6.6	50
17	A C–C bonded 5,6-fused bicyclic energetic molecule: exploring an advanced energetic compound with improved performance. Chemical Communications, 2018, 54, 10566-10569.	2.2	48
18	Challenging the Limits of Nitro Groups Associated with a Tetrazole Ring. Organic Letters, 2019, 21, 4684-4688.	2.4	46

#	Article	IF	CITATIONS
19	Energetic derivatives of $4,4\hat{a}\in^2$, $5,5\hat{a}\in^2$ -tetranitro- $2H,2\hat{a}\in^2H-3,3\hat{a}\in^2$ -bipyrazole (TNBP): synthesis, characterization and promising properties. Journal of Materials Chemistry A, 2018, 6, 5136-5142.	5.2	44
20	Multipurpose Energetic Materials by Shuffling Nitro Groups on a 3,3′â€Bipyrazole Moiety. Chemistry - A European Journal, 2018, 24, 17220-17224.	1.7	44
21	Asymmetric nitrogen-rich energetic materials resulting from the combination of tetrazolyl, dinitromethyl and (1,2,4-oxadiazol-5-yl)nitroamino groups with furoxan. Dalton Transactions, 2018, 47, 16558-16566.	1.6	43
22	Construction of Polynitro Compounds as High-Performance Oxidizers via a Two-Step Nitration of Various Functional Groups. Organic Letters, 2019, 21, 1073-1077.	2.4	43
23	Energetic Derivatives of 8-Nitropyrazolo $[1,5-\langle i\rangle a\langle i\rangle][1,3,5]$ triazine-2,4,7-triamine: Achieving Balanced Explosives by Fusing Pyrazole with Triazine. Organic Letters, 2020, 22, 1321-1325.	2.4	42
24	Ring closure of polynitroazoles <i>via</i> an <i>N</i> , <i>N</i> ′-alkylene bridge: towards high thermally stable energetic compounds. Journal of Materials Chemistry A, 2018, 6, 8382-8387.	5.2	40
25	3,4,5-Trinitro-1-(nitromethyl)-1 <i>H</i> -pyrazole (TNNMP): a perchlorate free high energy density oxidizer with high thermal stability. Journal of Materials Chemistry A, 2017, 5, 10437-10441.	5.2	39
26	Energetic furazan-triazole hybrid with dinitromethyl and nitramino groups: decreasing sensitivity <i>via</i> the formation of a planar anion. Dalton Transactions, 2019, 48, 7677-7684.	1.6	39
27	Nitromethane Bridged Bis(1,3,4â€oxadiazoles): Trianionic Energetic Salts with Low Sensitivities. Chemistry - A European Journal, 2017, 23, 17682-17686.	1.7	38
28	Ammonia Oxide as a Building Block for Highâ€Performance and Insensitive Energetic Materials. Angewandte Chemie - International Edition, 2017, 56, 5894-5898.	7.2	35
29	Selecting Suitable Substituents for Energetic Materials Based on a Fused Triazolo-[1,2,4,5]tetrazine Ring. ACS Applied Energy Materials, 2020, 3, 5510-5516.	2.5	33
30	Design and synthesis of $\langle i \rangle N \langle i \rangle$ -methylene- $\langle i \rangle C \langle i \rangle$ linked tetrazole and nitramino-1,2,4-triazole: an approach to promising energetic materials. Journal of Materials Chemistry A, 2016, 4, 13923-13929.	5.2	32
31	Energetic dinitromethyl group functionalized azofurazan and its azofurazanates. RSC Advances, 2016, 6, 91477-91482.	1.7	32
32	<i>N</i> â€Acetonitrile Functionalized Nitropyrazoles: Precursors to Insensitive Asymmetric <i>N</i> â€Methylene Linked Azoles. Chemistry - A European Journal, 2017, 23, 7876-7881.	1.7	32
33	Green Synthetic Approach for High-Performance Energetic Nitramino Azoles. Organic Letters, 2019, 21, 2610-2614.	2.4	29
34	Azo- and methylene-bridged mixed azoles for stable and insensitive energetic applications. Dalton Transactions, 2020, 49, 11498-11503.	1.6	29
35	Tetrazolyl Triazolotriazine: A New Insensitive High Explosive. Propellants, Explosives, Pyrotechnics, 2017, 42, 238-242.	1.0	28
36	Energetic Functionalized Azido/Nitro Imidazole Fused 1,2,3,4â€Tetrazine. European Journal of Organic Chemistry, 2018, 2018, 2273-2276.	1.2	28

#	Article	IF	CITATIONS
37	Oxidative Cyclization Protocol for the Preparation of Energetic 3-Amino-5- $\langle i\rangle R\langle i\rangle$ -1,2,4-oxadiazoles. Organic Letters, 2018, 20, 8039-8042.	2.4	28
38	Synthesis of Erythritol Tetranitrate Derivatives: Functional Group Tuning of Explosive Sensitivity. Journal of Organic Chemistry, 2020, 85, 4619-4626.	1.7	28
39	Tetrazolyl and dinitromethyl groups with 1,2,3-triazole lead to polyazole energetic materials. Dalton Transactions, 2019, 48, 3237-3242.	1.6	27
40	Nitramino―and Dinitromethylâ€Substituted 1,2,4â€Triazole Derivatives as Highâ€Performance Energetic Materials. Chemistry - A European Journal, 2017, 23, 9185-9191.	1.7	25
41	Derivatives of 3,6-Bis(3-aminofurazan-4-ylamino)-1,2,4,5-tetrazine: Excellent Energetic Properties with Lower Sensitivities. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31522-31531.	4.0	25
42	Energetic 1,2,5â€Oxadiazoloâ€Pyridazine and its Nâ€Oxide. Chemistry - A European Journal, 2017, 23, 15022-15025.	1.7	23
43	Control of Biohazards: A High Performance Energetic Polycyclized Iodine-Containing Biocide. Inorganic Chemistry, 2018, 57, 8673-8680.	1.9	23
44	Intermolecular Weak Hydrogen Bonding (Het-H-N/O): an Effective Strategy for the Synthesis of Monosubstituted 1,2,4,5-Tetrazine-Based Energetic Materials with Excellent Sensitivity. Journal of Organic Chemistry, 2019, 84, 16019-16026.	1.7	23
45	Energetic 4,4′â€Oxybis[3,3′â€(1â€hydroxytetrazolyl)]furazan and Its Salts. Chemistry - an Asian Journal, 2013113-3117.	l6,11, 1:7	22
46	Dinitromethylâ€3(5)â€1,2,4â€oxadiazole Derivatives from Controllable Cyclization Strategies. Chemistry - A European Journal, 2017, 23, 16401-16407.	1.7	22
47	New Generation Agent Defeat Weapons: Energetic N , N ′â€Ethyleneâ€Bridged Polyiodoazoles. Chemistry - A European Journal, 2017, 23, 16753-16757.	1.7	22
48	Polynitroâ€Functionalized Dipyrazoloâ€1,3,5â€triazinanes: Energetic Polycyclization toward High Density and Excellent Molecular Stability. Angewandte Chemie, 2017, 129, 8960-8964.	1.6	22
49	Versatile functionalization of 3,5-diamino-4-nitropyrazole for promising insensitive energetic compounds. Dalton Transactions, 2019, 48, 14490-14496.	1.6	22
50	Finding furoxan rings. Journal of Materials Chemistry A, 2020, 8, 5859-5864.	5.2	22
51	Resolving synthetic challenges faced in the syntheses of asymmetric <i>N</i> , <i>N</i> ,€2-ethylene-bridged energetic compounds. New Journal of Chemistry, 2017, 41, 4040-4047.	1.4	21
52	Simple and Efficient Synthesis of Explosive Cocrystals containing 3,5â€Dimethylpyrazolâ€1â€ylâ€substitutedâ€1,2,4,5â€tetrazines. Chemistry - A European Journal, 2017, 23, 1646	6 1.7 16471.	. 21
53	One-pot sequential reaction to 2-substituted-phenanthridinones from N-methoxybenzamides. Organic and Biomolecular Chemistry, 2017, 15, 4390-4398.	1.5	20
54	1,3,5-Triiodo-2,4,6-trinitrobenzene (TITNB) from benzene: Balancing performance and high thermal stability of functional energetic materials. Chemical Engineering Journal, 2019, 378, 122119.	6.6	18

#	Article	IF	CITATIONS
55	<i>N</i> , <i>N</i> ,ê≥-Methylenebis(<i>N</i> -(1,2,5-oxadiazol-3-yl)nitramide) derivatives as metal-free green primary explosives. Dalton Transactions, 2018, 47, 12661-12666.	1.6	17
56	Functional energetic biocides by coupling of energetic and biocidal polyiodo building blocks. Chemical Engineering Journal, 2019, 368, 244-251.	6.6	16
57	Improving the density and properties of nitrogen-rich scaffolds by the introduction of a C–NO ₂ group. New Journal of Chemistry, 2018, 42, 16162-16166.	1.4	13
58	C ₆ N ₁₀ O ₄ : Thermally Stable Nitrogen-Rich Inner Bis(diazonium) Zwitterions. Organic Letters, 2019, 21, 8201-8204.	2.4	13
59	Synergetic Explosive Performance through Cocrystallization. Crystal Growth and Design, 2021, 21, 1401-1405.	1.4	12
60	Trimerization of 4â€Aminoâ€3,5â€dinitropyrazole: Formation, Preparation, and Characterization of 4â€Diazoâ€3,5â€bis(4â€aminoâ€3,5â€dinitropyrazolâ€1â€yl) pyrazole (LLMâ€226). Journal of Heterocyclic Cho56, 781-787.	emi s try, 20	01940
61	gem-Dinitromethyl-Functionalized 5-Amino-1,3,4-oxadiazolate Derivatives: Alternate Route, Characterization, and Property Analysis. Organic Letters, 2020, 22, 4771-4775.	2.4	10
62	Ammonia Oxide as a Building Block for Highâ€Performance and Insensitive Energetic Materials. Angewandte Chemie, 2017, 129, 5988-5992.	1.6	8
63	Evaluating the bis-isoxazole core for energetic heterocyclic-based oligomers. Polymer Chemistry, 2020, 11, 6149-6156.	1.9	2
64	Triple allylation/acylation of 1,3,5-triazine with allyltributyltin and carboxylic acid chlorides. Tetrahedron Letters, 2020, 61, 151776.	0.7	2
65	Nitrolysis of syn,syn-2,4,6-tris-(n-propyl)-hexahydro-1,3,5-tripropionyl-s-triazine. Tetrahedron Letters, 2020, 61, 152665.	0.7	O