Aziz Sancar

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/703048/aziz-sancar-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28,264 156 90 309 h-index g-index citations papers 30,620 319 9.3 7.37 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
309	A new technique for genome-wide mapping of nucleotide excision repair without immunopurification of damaged DNA <i>Journal of Biological Chemistry</i> , 2022 , 101863	5.4	
308	Clocks, cancer, and chronochemotherapy. <i>Science</i> , 2021 , 371,	33.3	41
307	Genome-wide analysis of 8-oxo-7,8-dihydro-2Rdeoxyguanosine at single-nucleotide resolution unveils reduced occurrence of oxidative damage at G-quadruplex sites. <i>Nucleic Acids Research</i> , 2021 , 49, 12252-12267	20.1	3
306	Molecular mechanism of the repressive phase of the mammalian circadian clock. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	17
305	The Transcription-Repair Coupling Factor Mfd Prevents and Promotes Mutagenesis in a Context-Dependent Manner. <i>Frontiers in Molecular Biosciences</i> , 2021 , 8, 668290	5.6	2
304	CRY1-CBS binding regulates circadian clock function and metabolism. <i>FEBS Journal</i> , 2021 , 288, 614-639	5.7	16
303	Genome-wide circadian rhythm detection methods: systematic evaluations and practical guidelines. <i>Briefings in Bioinformatics</i> , 2021 , 22,	13.4	5
302	Super hotspots and super coldspots in the repair of UV-induced DNA damage in the human genome. <i>Journal of Biological Chemistry</i> , 2021 , 296, 100581	5.4	4
301	My 100th JBC paper. Journal of Biological Chemistry, 2021 , 296, 100061	5.4	
300	Comparative analyses of two primate species diverged by more than 60 million years show different rates but similar distribution of genome-wide UV repair events. <i>BMC Genomics</i> , 2021 , 22, 600	4.5	1
299	Circadian clock, carcinogenesis, chronochemotherapy connections. <i>Journal of Biological Chemistry</i> , 2021 , 297, 101068	5.4	3
298	CRYPTOCHROMES confer robustness, not rhythmicity, to circadian timekeeping. <i>EMBO Journal</i> , 2021 , 40, e106745	13	12
297	Methodologies for detecting environmentally induced DNA damage and repair. <i>Environmental and Molecular Mutagenesis</i> , 2020 , 61, 664-679	3.2	17
296	Genome-wide single-nucleotide resolution of oxaliplatin-DNA adduct repair in drug-sensitive and -resistant colorectal cancer cell lines. <i>Journal of Biological Chemistry</i> , 2020 , 295, 7584-7594	5.4	8
295	Mycobacteria excise DNA damage in 12- or 13-nucleotide-long oligomers by prokaryotic-type dual incisions and performs transcription-coupled repair. <i>Journal of Biological Chemistry</i> , 2020 , 295, 17374-1	73 8 0	3
294	Circadian regulation of c-MYC in mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 21609-21617	11.5	5
293	A Sextuple Knockout Cell Line System to Study the Differential Roles of CRY, PER, and NR1D in the Transcription-Translation Feedback Loop of the Circadian Clock. <i>Frontiers in Neuroscience</i> , 2020 , 14, 616	802	1

(2017-2020)

292	The circadian clock shapes the s transcriptome by regulating alternative splicing and alternative polyadenylation. <i>Journal of Biological Chemistry</i> , 2020 , 295, 7608-7619	5.4	12
291	DCAF7 is required for maintaining the cellular levels of ERCC1-XPF and nucleotide excision repair. Biochemical and Biophysical Research Communications, 2019 , 519, 204-210	3.4	3
290	Differential damage and repair of DNA-adducts induced by anti-cancer drug cisplatin across mouse organs. <i>Nature Communications</i> , 2019 , 10, 309	17.4	68
289	Long-term, genome-wide kinetic analysis of the effect of the circadian clock and transcription on the repair of cisplatin-DNA adducts in the mouse liver. <i>Journal of Biological Chemistry</i> , 2019 , 294, 11960)-∮ 1 968	8 ¹⁰
288	Mechanistic Study of TTF-1 Modulation of Cellular Sensitivity to Cisplatin. Scientific Reports, 2019, 9, 79	94 .9	2
287	Nucleotide excision repair capacity increases during differentiation of human embryonic carcinoma cells into neurons and muscle cells. <i>Journal of Biological Chemistry</i> , 2019 , 294, 5914-5922	5.4	8
286	, which lacks canonical transcription-coupled repair proteins, performs transcription-coupled repair. Journal of Biological Chemistry, 2019 , 294, 18092-18098	5.4	17
285	Single-nucleotide resolution analysis of nucleotide excision repair of ribosomal DNA in humans and mice. <i>Journal of Biological Chemistry</i> , 2019 , 294, 210-217	5.4	11
284	Genome-wide mapping of nucleotide excision repair with XR-seq. <i>Nature Protocols</i> , 2019 , 14, 248-282	18.8	22
283	Genome-wide excision repair in Arabidopsis is coupled to transcription and reflects circadian gene expression patterns. <i>Nature Communications</i> , 2018 , 9, 1503	17.4	23
282	RNA polymerase II is released from the DNA template during transcription-coupled repair in mammalian cells. <i>Journal of Biological Chemistry</i> , 2018 , 293, 2476-2486	5.4	29
281	Single-nucleotide resolution dynamic repair maps of UV damage in genome. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E3408-E3415	11.5	22
280	Cisplatin-DNA adduct repair of transcribed genes is controlled by two circadian programs in mouse tissues. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E477	7 7- E47	8 \$ 8
279	Comparative properties and functions of type 2 and type 4 pigeon cryptochromes. <i>Cellular and Molecular Life Sciences</i> , 2018 , 75, 4629-4641	10.3	16
278	It Is Chemistry but Not Your Grandfather & Chemistry. Biochemistry, 2017, 56, 1-2	3.2	7
277	Oliver Smithies (1925-2017). <i>Science</i> , 2017 , 355, 695	33.3	1
276	Biography. <i>Photochemistry and Photobiology</i> , 2017 , 93, 7-14	3.6	
275	Genome-wide transcription-coupled repair in is mediated by the Mfd translocase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E2116-E2125	11.5	53

274 Claud S. Rupert (1919-2017): The Father of DNA Repair. *Photochemistry and Photobiology*, **2017**, 93, 1133₃.16134 1

-/ T			_
273	Human genome-wide repair map of DNA damage caused by the cigarette smoke carcinogen benzo[a]pyrene. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 6752-6757	11.5	51
272	Dynamic maps of UV damage formation and repair for the human genome. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 6758-6763	11.5	85
271	Clock Regulation of Metabolites Reveals Coupling between Transcription and Metabolism. <i>Cell Metabolism</i> , 2017 , 25, 961-974.e4	24.6	96
270	Preface. Photochemistry and Photobiology, 2017 , 93, 4	3.6	
269	Mfd translocase is necessary and sufficient for transcription-coupled repair in. <i>Journal of Biological Chemistry</i> , 2017 , 292, 18386-18391	5.4	30
268	Molecular mechanisms and genomic maps of DNA excision repair in and humans. <i>Journal of Biological Chemistry</i> , 2017 , 292, 15588-15597	5.4	45
267	Guidelines for Genome-Scale Analysis of Biological Rhythms. <i>Journal of Biological Rhythms</i> , 2017 , 32, 380-393	3.2	127
266	Bifurcating electron-transfer pathways in DNA photolyases determine the repair quantum yield. <i>Science</i> , 2016 , 354, 209-213	33.3	34
265	SREBP1c-CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding. <i>Nature Communications</i> , 2016 , 7, 12180	17.4	42
264	Genome-wide kinetics of DNA excision repair in relation to chromatin state and mutagenesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E2124-33	11.5	100
263	ATR Kinase Inhibition Protects Non-cycling Cells from the Lethal Effects of DNA Damage and Transcription Stress. <i>Journal of Biological Chemistry</i> , 2016 , 291, 9330-42	5.4	25
262	Mechanismen der DNA-Reparatur durch Photolyasen und Exzisionsnukleasen (Nobel-Aufsatz). <i>Angewandte Chemie</i> , 2016 , 128, 8643-8670	3.6	7
261	Mechanisms of DNA Repair by Photolyase and Excision Nuclease (Nobel Lecture). <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8502-27	16.4	127
260	Nucleotide excision repair by dual incisions in plants. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 4706-10	11.5	24
259	Mammalian Period represses and de-represses transcription by displacing CLOCK-BMAL1 from promoters in a Cryptochrome-dependent manner. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E6072-E6079	11.5	80
258	Cisplatin DNA damage and repair maps of the human genome at single-nucleotide resolution. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11507-11512	2 ^{11.5}	96
257	The 2015 Nobel Prize in Chemistry The Discovery of Essential Mechanisms that Repair DNA Damage. <i>Journal of the Association of Genetic Technologists</i> , 2016 , 42, 37-41	0.1	7

(2013-2015)

256	RHINO forms a stoichiometric complex with the 9-1-1 checkpoint clamp and mediates ATR-Chk1 signaling. <i>Cell Cycle</i> , 2015 , 14, 99-108	4.7	30
255	Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution. <i>Genes and Development</i> , 2015 , 29, 948-60	12.6	147
254	An Integrated Approach for Analysis of the DNA Damage Response in Mammalian Cells: NUCLEOTIDE EXCISION REPAIR, DNA DAMAGE CHECKPOINT, AND APOPTOSIS. <i>Journal of Biological Chemistry</i> , 2015 , 290, 28812-21	5.4	25
253	Circadian clock, cancer, and chemotherapy. <i>Biochemistry</i> , 2015 , 54, 110-23	3.2	95
252	UV Light Potentiates STING (Stimulator of Interferon Genes)-dependent Innate Immune Signaling through Deregulation of ULK1 (Unc51-like Kinase 1). <i>Journal of Biological Chemistry</i> , 2015 , 290, 12184-9	45.4	40
251	The molecular origin of high DNA-repair efficiency by photolyase. <i>Nature Communications</i> , 2015 , 6, 7307	217.4	42
250	Analysis of Ribonucleotide Removal from DNA by Human Nucleotide Excision Repair. <i>Journal of Biological Chemistry</i> , 2015 , 290, 29801-7	5.4	14
249	The circadian clock controls sunburn apoptosis and erythema in mouse skin. <i>Journal of Investigative Dermatology</i> , 2015 , 135, 1119-1127	4.3	44
248	Coupling of Human DNA Excision Repair and the ATR-mediated DNA Damage Checkpoint. <i>FASEB Journal</i> , 2015 , 29, 490.1	0.9	1
247	Direct determination of resonance energy transfer in photolyase: structural alignment for the functional state. <i>Journal of Physical Chemistry A</i> , 2014 , 118, 10522-30	2.8	18
246	Dual modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and Period proteins in the mammalian circadian clock. <i>Genes and Development</i> , 2014 , 28, 1989-98	12.6	123
245	Mechanism of photosignaling by Drosophila cryptochrome: role of the redox status of the flavin chromophore. <i>Journal of Biological Chemistry</i> , 2014 , 289, 4634-42	5.4	35
244	Coupling of human DNA excision repair and the DNA damage checkpoint in a defined in vitro system. <i>Journal of Biological Chemistry</i> , 2014 , 289, 5074-82	5.4	45
243	Highly specific and sensitive method for measuring nucleotide excision repair kinetics of ultraviolet photoproducts in human cells. <i>Nucleic Acids Research</i> , 2014 , 42, e29	20.1	31
242	Gene model 129 (Gm129) encodes a novel transcriptional repressor that modulates circadian gene expression. <i>Journal of Biological Chemistry</i> , 2014 , 289, 5013-24	5.4	42
241	DNA repair synthesis and ligation affect the processing of excised oligonucleotides generated by human nucleotide excision repair. <i>Journal of Biological Chemistry</i> , 2014 , 289, 26574-26583	5.4	26
240	Formation of Arabidopsis Cryptochrome 2 photobodies in mammalian nuclei: application as an optogenetic DNA damage checkpoint switch. <i>Journal of Biological Chemistry</i> , 2013 , 288, 23244-51	5.4	32
239	Ramshackle (Brwd3) promotes light-induced ubiquitylation of Drosophila Cryptochrome by DDB1-CUL4-ROC1 E3 ligase complex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 4980-5	11.5	45

238	DNA damage-specific control of cell death by cryptochrome in p53-mutant ras-transformed cells. <i>Cancer Research</i> , 2013 , 73, 785-91	10.1	30
237	Direct role for the replication protein treslin (Ticrr) in the ATR kinase-mediated checkpoint response. <i>Journal of Biological Chemistry</i> , 2013 , 288, 18903-10	5.4	14
236	Nucleotide excision repair in human cells: fate of the excised oligonucleotide carrying DNA damage in vivo. <i>Journal of Biological Chemistry</i> , 2013 , 288, 20918-20926	5.4	61
235	Dynamic determination of the functional state in photolyase and the implication for cryptochrome. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 12972-7	11.5	40
234	Determining complete electron flow in the cofactor photoreduction of oxidized photolyase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 12966-71	11.5	72
233	The second chromophore in Drosophila photolyase/cryptochrome family photoreceptors. <i>Biochemistry</i> , 2012 , 51, 167-71	3.2	32
232	Blue-light-receptive cryptochrome is expressed in a sponge eye lacking neurons and opsin. <i>Journal of Experimental Biology</i> , 2012 , 215, 1278-86	3	65
231	Electron tunneling pathways and role of adenine in repair of cyclobutane pyrimidine dimer by DNA photolyase. <i>Journal of the American Chemical Society</i> , 2012 , 134, 8104-14	16.4	56
230	Effect of circadian clock mutations on DNA damage response in mammalian cells. <i>Cell Cycle</i> , 2012 , 11, 3481-91	4.7	36
229	In vitro analysis of the role of replication protein A (RPA) and RPA phosphorylation in ATR-mediated checkpoint signaling. <i>Journal of Biological Chemistry</i> , 2012 , 287, 36123-31	5.4	20
228	DNA excision repair: where do all the dimers go?. Cell Cycle, 2012, 11, 2997-3002	4.7	26
227	Mechanism of release and fate of excised oligonucleotides during nucleotide excision repair. Journal of Biological Chemistry, 2012 , 287, 22889-99	5.4	63
226	Control of skin cancer by the circadian rhythm. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 18790-5	11.5	155
225	Regulation of apoptosis by the circadian clock through NF-kappaB signaling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 12036-41	11.5	74
224	Tethering DNA damage checkpoint mediator proteins topoisomerase Ilbeta-binding protein 1 (TopBP1) and Claspin to DNA activates ataxia-telangiectasia mutated and RAD3-related (ATR) phosphorylation of checkpoint kinase 1 (Chk1). <i>Journal of Biological Chemistry</i> , 2011 , 286, 19229-36	5.4	30
223	Dynamics and mechanism of cyclobutane pyrimidine dimer repair by DNA photolyase. <i>Proceedings</i> of the National Academy of Sciences of the United States of America, 2011 , 108, 14831-6	11.5	130
222	Reaction mechanism of Drosophila cryptochrome. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 516-21	11.5	102
221	Regulation of nucleotide excision repair activity by transcriptional and post-transcriptional control of the XPA protein. <i>Nucleic Acids Research</i> , 2011 , 39, 3176-87	20.1	89

(2009-2011)

220	The DNA damage response kinases DNA-dependent protein kinase (DNA-PK) and ataxia telangiectasia mutated (ATM) Are stimulated by bulky adduct-containing DNA. <i>Journal of Biological Chemistry</i> , 2011 , 286, 19237-46	5.4	26
219	Circadian clock disruption improves the efficacy of chemotherapy through p73-mediated apoptosis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 10668-72	11.5	51
218	Biochemical analysis of the canonical model for the mammalian circadian clock. <i>Journal of Biological Chemistry</i> , 2011 , 286, 25891-902	5.4	87
217	Multiple ATR-Chk1 pathway proteins preferentially associate with checkpoint-inducing DNA substrates. <i>PLoS ONE</i> , 2011 , 6, e22986	3.7	11
216	Dynamics and mechanism of repair of ultraviolet-induced (6-4) photoproduct by photolyase. <i>Nature</i> , 2010 , 466, 887-890	50.4	165
215	Tipin-replication protein A interaction mediates Chk1 phosphorylation by ATR in response to genotoxic stress. <i>Journal of Biological Chemistry</i> , 2010 , 285, 16562-71	5.4	80
214	Similar nucleotide excision repair capacity in melanocytes and melanoma cells. <i>Cancer Research</i> , 2010 , 70, 4922-30	10.1	50
213	Ultrafast solvation dynamics at binding and active sites of photolyases. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 2914-9	11.5	63
212	An alternative form of replication protein a expressed in normal human tissues supports DNA repair. <i>Journal of Biological Chemistry</i> , 2010 , 285, 4788-97	5.4	21
211	Circadian control of XPA and excision repair of cisplatin-DNA damage by cryptochrome and HERC2 ubiquitin ligase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 4890-5	11.5	169
210	Interactions of human mismatch repair proteins MutSalpha and MutLalpha with proteins of the ATR-Chk1 pathway. <i>Journal of Biological Chemistry</i> , 2010 , 285, 5974-82	5.4	59
209	Reconstitution of RPA-covered single-stranded DNA-activated ATR-Chk1 signaling. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 13660-5	11.5	90
208	Circadian clock control of the cellular response to DNA damage. FEBS Letters, 2010, 584, 2618-25	3.8	172
207	Interactions of human mismatch repair proteins MutSalpha and MutLalpha with proteins of the ATR-Chk1 pathway. <i>FASEB Journal</i> , 2010 , 24, 492.10	0.9	
206	Reconstitution of human claspin-mediated phosphorylation of Chk1 by the ATR (ataxia telangiectasia-mutated and rad3-related) checkpoint kinase. <i>Journal of Biological Chemistry</i> , 2009 , 284, 33107-14	5.4	39
205	Long patch base excision repair proceeds via coordinated stimulation of the multienzyme DNA repair complex. <i>Journal of Biological Chemistry</i> , 2009 , 284, 15158-72	5.4	43
204	Circadian regulation of DNA excision repair: implications for chrono-chemotherapy. <i>Cell Cycle</i> , 2009 , 8, 1665-7	4.7	68
203	Loss of cryptochrome reduces cancer risk in p53 mutant mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 2841-6	11.5	137

202	Cooperative activation of the ATR checkpoint kinase by TopBP1 and damaged DNA. <i>Nucleic Acids Research</i> , 2009 , 37, 1501-9	20.1	36
201	Circadian oscillation of nucleotide excision repair in mammalian brain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 2864-7	11.5	149
200	DNA distress: just ring 9-1-1. Current Biology, 2009 , 19, R733-4	6.3	11
199	Comparative photochemistry of animal type 1 and type 4 cryptochromes. <i>Biochemistry</i> , 2009 , 48, 8585-9	93.2	49
198	The influence of repair pathways on the cytotoxicity and mutagenicity induced by the pyridyloxobutylation pathway of tobacco-specific nitrosamines. <i>Chemical Research in Toxicology</i> , 2009 , 22, 1464-72	4	26
197	The human ATR-mediated DNA damage checkpoint in a reconstituted system. <i>Methods</i> , 2009 , 48, 3-7	4.6	19
196	Long Patch Base Excision Repair proceeds via coordinated stimulation of the multienzyme repair complex. <i>FASEB Journal</i> , 2009 , 23, 836.13	0.9	
195	cis-Diammine(pyridine)chloroplatinum(II), a monofunctional platinum(II) antitumor agent: Uptake, structure, function, and prospects. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 8902-7	11.5	198
194	Ultrafast dynamics of flavins in five redox states. <i>Journal of the American Chemical Society</i> , 2008 , 130, 13132-9	16.4	173
193	Purification and characterization of a type III photolyase from Caulobacter crescentus. <i>Biochemistry</i> , 2008 , 47, 10255-61	3.2	37
192	Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase. <i>Journal of the American Chemical Society</i> , 2008 , 130, 7695-701	16.4	112
191	Animal type 1 cryptochromes. Analysis of the redox state of the flavin cofactor by site-directed mutagenesis. <i>Journal of Biological Chemistry</i> , 2008 , 283, 3256-3263	5.4	98
190	Sleep deprivation effects on circadian clock gene expression in the cerebral cortex parallel electroencephalographic differences among mouse strains. <i>Journal of Neuroscience</i> , 2008 , 28, 7193-201	6.6	101
189	Structure and function of photolyase and in vivo enzymology: 50th anniversary. <i>Journal of Biological Chemistry</i> , 2008 , 283, 32153-7	5.4	140
188	Cryptochromes and Inner Retinal Non-Visual Irradiance Detection. <i>Novartis Foundation Symposium</i> , 2008 , 31-51		4
187	Resonance Raman spectroscopic investigation of the light-harvesting chromophore in escherichia coli photolyase and Vibrio cholerae cryptochrome-1. <i>Biochemistry</i> , 2007 , 46, 3673-81	3.2	8
186	A mathematical model for human nucleotide excision repair: damage recognition by random order assembly and kinetic proofreading. <i>Journal of Theoretical Biology</i> , 2007 , 249, 361-75	2.3	27
185	Femtochemistry in enzyme catalysis: DNA photolyase. <i>Cell Biochemistry and Biophysics</i> , 2007 , 48, 32-44	3.2	37

Cdc7-Dbf4 and the human S checkpoint response to UVC. Journal of Biological Chemistry, 2007, 282, 9458-946856 184 RNA polymerase: the most specific damage recognition protein in cellular responses to DNA damage?. Proceedings of the National Academy of Sciences of the United States of America, 2007, 183 11.5 60 104, 13213-4 Reconstitution of a human ATR-mediated checkpoint response to damaged DNA. Proceedings of the 182 11.5 59 National Academy of Sciences of the United States of America, 2007, 104, 13301-6 The human Tim/Tipin complex coordinates an Intra-S checkpoint response to UV that slows 181 4.8 194 replication fork displacement. Molecular and Cellular Biology, 2007, 27, 3131-42 Formation and function of flavin anion radical in cryptochrome 1 blue-light photoreceptor of 180 5.4 74 monarch butterfly. Journal of Biological Chemistry, 2007, 282, 17608-12 Repair of DNA-protein cross-links in mammalian cells. Cell Cycle, 2006, 5, 1366-70 179 4.7 44 Purification and characterization of Escherichia coli and human nucleotide excision repair enzyme 178 1.7 57 systems. *Methods in Enzymology*, **2006**, 408, 189-213 Posttranslational regulation of the mammalian circadian clock by cryptochrome and protein phosphatase 5. Proceedings of the National Academy of Sciences of the United States of America, 11.5 69 **2006**, 103, 10467-10472 Mechanism of stimulation of human DNA ligase I by the Rad9-rad1-Hus1 checkpoint complex. 176 38 5.4 Journal of Biological Chemistry, **2006**, 281, 20865-20872 Repair of DNA-polypeptide crosslinks by human excision nuclease. Proceedings of the National 175 11.5 72 Academy of Sciences of the United States of America, 2006, 103, 4056-61 Recruitment of DNA damage checkpoint proteins to damage in transcribed and nontranscribed 174 4.8 62 sequences. Molecular and Cellular Biology, 2006, 26, 39-49 A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase 173 activity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1769 $^{11}_{67}$ 00 235 Purification and characterization of DNA photolyases. Methods in Enzymology, 2006, 408, 121-56 172 1.7 14 Analysis of autophosphorylating kinase activities of Arabidopsis and human cryptochromes. 171 3.2 44 Biochemistry, 2006, 45, 13369-74 Nucleotide excision repair. Progress in Molecular Biology and Translational Science, 2005, 79, 183-235 170 220 Femtosecond dynamics of flavin cofactor in DNA photolyase: radical reduction, local solvation, and 169 3.4 41 charge recombination. Journal of Physical Chemistry B, 2005, 109, 1329-33 Ultrafast dynamics of resonance energy transfer in cryptochrome. Journal of the American Chemical 168 16.4 43 Society, 2005, 127, 7984-5 Cryptochromes and circadian photoreception in animals. Methods in Enzymology, 2005, 393, 726-45 167 34

166	Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor. <i>Biochemistry</i> , 2005 , 44, 3795-805	3.2	151
165	Photochemistry and photobiology of cryptochrome blue-light photopigments: the search for a photocycle. <i>Photochemistry and Photobiology</i> , 2005 , 81, 1291-304	3.6	99
164	Animal Cryptochromes 2005 , 259-276		2
163	Cryptochrome, circadian cycle, cell cycle checkpoints, and cancer. <i>Cancer Research</i> , 2005 , 65, 6828-34	10.1	143
162	Electrically monitoring DNA repair by photolyase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 10788-92	11.5	53
161	Direct observation of thymine dimer repair in DNA by photolyase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 16128-32	11.5	221
160	Nucleotide excision repair, oxidative damage, DNA sequence polymorphisms, and cancer treatment. <i>Clinical Cancer Research</i> , 2005 , 11, 1355-7	12.9	10
159	Coupling of human circadian and cell cycles by the timeless protein. <i>Molecular and Cellular Biology</i> , 2005 , 25, 3109-16	4.8	254
158	Xeroderma pigmentosum complementation group E protein (XPE/DDB2): purification of various complexes of XPE and analyses of their damaged DNA binding and putative DNA repair properties. <i>Molecular and Cellular Biology</i> , 2005 , 25, 9784-92	4.8	50
157	Photolyase and cryptochrome blue-light photoreceptors. <i>Advances in Protein Chemistry</i> , 2004 , 69, 73-1	00	57
157 156	Photolyase and cryptochrome blue-light photoreceptors. <i>Advances in Protein Chemistry</i> , 2004 , 69, 73-1 Quaternary structure of ATR and effects of ATRIP and replication protein A on its DNA binding and kinase activities. <i>Molecular and Cellular Biology</i> , 2004 , 24, 1292-300	4.8	57 88
	Quaternary structure of ATR and effects of ATRIP and replication protein A on its DNA binding and		
156	Quaternary structure of ATR and effects of ATRIP and replication protein A on its DNA binding and kinase activities. <i>Molecular and Cellular Biology</i> , 2004 , 24, 1292-300 Regulation of the mammalian circadian clock by cryptochrome. <i>Journal of Biological Chemistry</i> ,	4.8	88
156 155	Quaternary structure of ATR and effects of ATRIP and replication protein A on its DNA binding and kinase activities. <i>Molecular and Cellular Biology</i> , 2004 , 24, 1292-300 Regulation of the mammalian circadian clock by cryptochrome. <i>Journal of Biological Chemistry</i> , 2004 , 279, 34079-82 The human Rad9 checkpoint protein stimulates the carbamoyl phosphate synthetase activity of the	4.8	88
156 155 154	Quaternary structure of ATR and effects of ATRIP and replication protein A on its DNA binding and kinase activities. <i>Molecular and Cellular Biology</i> , 2004 , 24, 1292-300 Regulation of the mammalian circadian clock by cryptochrome. <i>Journal of Biological Chemistry</i> , 2004 , 279, 34079-82 The human Rad9 checkpoint protein stimulates the carbamoyl phosphate synthetase activity of the multifunctional protein CAD. <i>Nucleic Acids Research</i> , 2004 , 32, 4524-30 Effect of vitamin A depletion on nonvisual phototransduction pathways in cryptochromeless mice.	4.8 5.4 20.1	88 102 18
156 155 154	Quaternary structure of ATR and effects of ATRIP and replication protein A on its DNA binding and kinase activities. <i>Molecular and Cellular Biology</i> , 2004 , 24, 1292-300 Regulation of the mammalian circadian clock by cryptochrome. <i>Journal of Biological Chemistry</i> , 2004 , 279, 34079-82 The human Rad9 checkpoint protein stimulates the carbamoyl phosphate synthetase activity of the multifunctional protein CAD. <i>Nucleic Acids Research</i> , 2004 , 32, 4524-30 Effect of vitamin A depletion on nonvisual phototransduction pathways in cryptochromeless mice. <i>Journal of Biological Rhythms</i> , 2004 , 19, 504-17 Thermodynamic Cooperativity and Kinetic Proofreading in DNA Damage Recognition and Repair.	4.8 5.4 20.1 3.2	88 102 18
156 155 154 153	Quaternary structure of ATR and effects of ATRIP and replication protein A on its DNA binding and kinase activities. <i>Molecular and Cellular Biology</i> , 2004 , 24, 1292-300 Regulation of the mammalian circadian clock by cryptochrome. <i>Journal of Biological Chemistry</i> , 2004 , 279, 34079-82 The human Rad9 checkpoint protein stimulates the carbamoyl phosphate synthetase activity of the multifunctional protein CAD. <i>Nucleic Acids Research</i> , 2004 , 32, 4524-30 Effect of vitamin A depletion on nonvisual phototransduction pathways in cryptochromeless mice. <i>Journal of Biological Rhythms</i> , 2004 , 19, 504-17 Thermodynamic Cooperativity and Kinetic Proofreading in DNA Damage Recognition and Repair. <i>Cell Cycle</i> , 2004 , 3, 139-142 Human claspin is a ring-shaped DNA-binding protein with high affinity to branched DNA structures.	4.8 5.4 20.1 3.2 4.7	88 102 18 22 32

(2002-2004)

148	Analysis of the role of intraprotein electron transfer in photoreactivation by DNA photolyase in vivo. <i>Biochemistry</i> , 2004 , 43, 15103-10	3.2	70
147	Femtosecond Dynamics of DNA Photolyase: Energy Transfer of Antenna Initiation and Electron Transfer of Cofactor Reduction. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 18026-18033	3.4	75
146	Further evidence for the role of cryptochromes in retinohypothalamic photoreception/phototransduction. <i>Molecular Brain Research</i> , 2004 , 122, 158-66		22
145	Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. <i>Annual Review of Biochemistry</i> , 2004 , 73, 39-85	29.1	2443
144	DNA Photolyase 2004 , 698-702		
143	Thermodynamic cooperativity and kinetic proofreading in DNA damage recognition and repair. <i>Cell Cycle</i> , 2004 , 3, 141-4	4.7	21
142	Characterization of transcription-repair coupling factors in E. coli and humans. <i>Methods in Enzymology</i> , 2003 , 371, 300-24	1.7	7
141	Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRad17-replication factor C complex in vitro. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 1633-8	11.5	269
140	Identification and characterization of human MUS81-MMS4 structure-specific endonuclease. <i>Journal of Biological Chemistry</i> , 2003 , 278, 21715-20	5.4	47
139	Effect of damage type on stimulation of human excision nuclease by SWI/SNF chromatin remodeling factor. <i>Molecular and Cellular Biology</i> , 2003 , 23, 4121-5	4.8	54
138	Expression of the blue-light receptor cryptochrome in the human retina. <i>Investigative Ophthalmology and Visual Science</i> , 2003 , 44, 4515-21		49
137	Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. <i>Chemical Reviews</i> , 2003 , 103, 2203-37	68.1	1002
136	Nucleotide excision repair from site-specifically platinum-modified nucleosomes. <i>Biochemistry</i> , 2003 , 42, 6747-53	3.2	83
135	Purification and characterization of three members of the photolyase/cryptochrome family blue-light photoreceptors from Vibrio cholerae. <i>Journal of Biological Chemistry</i> , 2003 , 278, 39143-54	5.4	84
134	Purification and properties of human blue-light photoreceptor cryptochrome 2. <i>Biochemistry</i> , 2003 , 42, 2926-32	3.2	47
133	Recognition and repair of the cyclobutane thymine dimer, a major cause of skin cancers, by the human excision nuclease. <i>Genes and Development</i> , 2003 , 17, 2539-51	12.6	139
132	Light induction of a vertebrate clock gene involves signaling through blue-light receptors and MAP kinases. <i>Current Biology</i> , 2002 , 12, 844-8	6.3	110
131	Photolyase/cryptochrome blue-light photoreceptors use photon energy to repair DNA and reset the circadian clock. <i>Oncogene</i> , 2002 , 21, 9043-56	9.2	88

130	DDB accumulates at DNA damage sites immediately after UV irradiation and directly stimulates nucleotide excision repair. <i>Journal of Biological Chemistry</i> , 2002 , 277, 1637-40	5.4	167
129	Molecular anatomy of the human excision nuclease assembled at sites of DNA damage. <i>Molecular and Cellular Biology</i> , 2002 , 22, 5938-45	4.8	71
128	The SWI/SNF chromatin-remodeling factor stimulates repair by human excision nuclease in the mononucleosome core particle. <i>Molecular and Cellular Biology</i> , 2002 , 22, 6779-87	4.8	132
127	Structures of the human Rad17-replication factor C and checkpoint Rad 9-1-1 complexes visualized by glycerol spray/low voltage microscopy. <i>Journal of Biological Chemistry</i> , 2002 , 277, 15233-6	5.4	93
126	Pleiotropic effects of cryptochromes 1 and 2 on free-running and light-entrained murine circadian rhythms. <i>Journal of Neurogenetics</i> , 2002 , 16, 181-203	1.6	27
125	Preferential binding of ATR protein to UV-damaged DNA. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 6673-8	11.5	141
124	Circadian photoreception in humans and mice. <i>Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics</i> , 2002 , 2, 484-92		32
123	Restoration of nucleotide excision repair in a helicase-deficient XPD mutant from intragenic suppression by a trichothiodystrophy mutation. <i>Molecular and Cellular Biology</i> , 2001 , 21, 7355-65	4.8	9
122	DNA repair excision nuclease attacks undamaged DNA. A potential source of spontaneous mutations. <i>Journal of Biological Chemistry</i> , 2001 , 276, 25421-6	5.4	82
121	Human DNA damage checkpoint protein hRAD9 is a 3Rto 5Rexonuclease. <i>Journal of Biological Chemistry</i> , 2000 , 275, 7451-4	5.4	67
120	DNA damage in the nucleosome core is refractory to repair by human excision nuclease. <i>Molecular and Cellular Biology</i> , 2000 , 20, 9173-81	4.8	150
119	DNA interstrand cross-links induce futile repair synthesis in mammalian cell extracts. <i>Molecular and Cellular Biology</i> , 2000 , 20, 2446-54	4.8	110
118	Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception. <i>Annual Review of Biochemistry</i> , 2000 , 69, 31-67	29.1	219
117	Order of assembly of human DNA repair excision nuclease. <i>Journal of Biological Chemistry</i> , 1999 , 274, 18759-68	5.4	147
116	Human transcription release factor 2 dissociates RNA polymerases I and II stalled at a cyclobutane thymine dimer. <i>Journal of Biological Chemistry</i> , 1999 , 274, 24779-86	5.4	42
115	A Third Member of the Photolyase/Blue-light Photoreceptor Family in Drosophila: A Putative Circadian Photoreceptor. <i>Photochemistry and Photobiology</i> , 1999 , 69, 105-107	3.6	29
114	EPR, ENDOR, and TRIPLE resonance spectroscopy on the neutral flavin radical in Escherichia coli DNA photolyase. <i>Biochemistry</i> , 1999 , 38, 16740-8	3.2	70
113	Nucleotide excision repair: from E. coli to man. <i>Biochimie</i> , 1999 , 81, 15-25	4.6	182

112	Circadian regulation of cryptochrome genes in the mouse. <i>Molecular Brain Research</i> , 1999 , 71, 238-43		72
111	Origin of the transient electron paramagnetic resonance signals in DNA photolyase. <i>Biochemistry</i> , 1999 , 38, 3857-66	3.2	82
110	A Third Member of the Photolyase/Blue-light Photoreceptor Family in Drosophila: A Putative Circadian Photoreceptor 1999 , 69, 105		6
109	Xeroderma pigmentosum group C splice mutation associated with autism and hypoglycinemia. Journal of Investigative Dermatology, 1998 , 111, 791-6	4.3	54
108	Generation and characterization of an immortal cell line of xeroderma pigmentosum group E. <i>Mutation Research DNA Repair</i> , 1998 , 407, 55-65		1
107	Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. <i>Science</i> , 1998 , 282, 1490-4	33.3	320
106	Nucleotide excision repair in the third kingdom. <i>Journal of Bacteriology</i> , 1998 , 180, 5796-8	3.5	35
105	Reaction mechanism of (6-4) photolyase. <i>Journal of Biological Chemistry</i> , 1997 , 272, 32580-90	5.4	123
104	Model for XPC-independent transcription-coupled repair of pyrimidine dimers in humans. <i>Journal of Biological Chemistry</i> , 1997 , 272, 7570-3	5.4	80
103	The non-catalytic function of XPG protein during dual incision in human nucleotide excision repair. <i>Journal of Biological Chemistry</i> , 1997 , 272, 16030-4	5.4	117
102	Human transcription-repair coupling factor CSB/ERCC6 is a DNA-stimulated ATPase but is not a helicase and does not disrupt the ternary transcription complex of stalled RNA polymerase II. <i>Journal of Biological Chemistry</i> , 1997 , 272, 1885-90	5.4	208
101	Reconstitution of human excision nuclease with recombinant XPF-ERCC1 complex. <i>Journal of Biological Chemistry</i> , 1997 , 272, 3833-7	5.4	136
100	Characterization of reaction intermediates of human excision repair nuclease. <i>Journal of Biological Chemistry</i> , 1997 , 272, 28971-9	5.4	124
99	DNA excision repair assays. <i>Progress in Molecular Biology and Translational Science</i> , 1997 , 56, 63-81		6
98	Substrate and Temperature Dependence of DNA Photolyase Repair Activity Examined with Ultrafast Spectroscopy. <i>Journal of the American Chemical Society</i> , 1997 , 119, 10532-10536	16.4	73
97	Molecular cloning of a novel human gene encoding a 63-kDa protein and its sublocalization within the 11q13 locus. <i>Genomics</i> , 1997 , 41, 397-405	4.3	29
96	Human blue-light photoreceptor hCRY2 specifically interacts with protein serine/threonine phosphatase 5 and modulates its activity. <i>Photochemistry and Photobiology</i> , 1997 , 66, 727-31	3.6	74
95	Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. <i>Journal of Biological Chemistry</i> , 1996 , 271, 11047-50	5.4	152

94	Repair of cisplatinDNA adducts by the mammalian excision nuclease. <i>Biochemistry</i> , 1996 , 35, 10004-13	3.2	288
93	Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins. <i>Biochemistry</i> , 1996 , 35, 13871-7	3.2	239
92	Purification and characterization of Drosophila melanogaster photolyase. <i>Mutation Research DNA Repair</i> , 1996 , 363, 97-104		22
91	DNA excision repair. <i>Annual Review of Biochemistry</i> , 1996 , 65, 43-81	29.1	965
90	Purification and partial characterization of (6-4) photoproduct DNA photolyase from Xenopus laevis. <i>Photochemistry and Photobiology</i> , 1996 , 63, 292-5	3.6	45
89	DNA repair: enzymatic mechanisms and relevance to drug response. <i>Journal of the National Cancer Institute</i> , 1996 , 88, 1346-60	9.7	218
88	Reaction mechanism of human DNA repair excision nuclease. <i>Journal of Biological Chemistry</i> , 1996 , 271, 8285-94	5.4	277
87	Overproduction, purification, and characterization of the XPC subunit of the human DNA repair excision nuclease. <i>Journal of Biological Chemistry</i> , 1996 , 271, 19451-6	5.4	122
86	Purification and characterization of the XPF-ERCC1 complex of human DNA repair excision nuclease. <i>Journal of Biological Chemistry</i> , 1995 , 270, 22657-60	5.4	96
85	Reconstitution of human DNA repair excision nuclease in a highly defined system. <i>Journal of Biological Chemistry</i> , 1995 , 270, 2415-8	5.4	375
84	Structure and function of transcription-repair coupling factor. I. Structural domains and binding properties. <i>Journal of Biological Chemistry</i> , 1995 , 270, 4882-9	5.4	120
83	Inhibition of nucleotide excision repair by the cyclin-dependent kinase inhibitor p21. <i>Journal of Biological Chemistry</i> , 1995 , 270, 22008-16	5.4	120
82	Structure and function of transcription-repair coupling factor. II. Catalytic properties. <i>Journal of Biological Chemistry</i> , 1995 , 270, 4890-5	5.4	99
81	Excision repair in mammalian cells. <i>Journal of Biological Chemistry</i> , 1995 , 270, 15915-8	5.4	123
80	Structure and function of the UvrB protein. <i>Journal of Biological Chemistry</i> , 1995 , 270, 8319-27	5.4	68
79	The general transcription-repair factor TFIIH is recruited to the excision repair complex by the XPA protein independent of the TFIIE transcription factor. <i>Journal of Biological Chemistry</i> , 1995 , 270, 4896-9	90 ⁵ 2 ⁴	157
78	Human DNA repair excision nuclease. Analysis of the roles of the subunits involved in dual incisions by using anti-XPG and anti-ERCC1 antibodies. <i>Journal of Biological Chemistry</i> , 1995 , 270, 20862-9	5.4	162
77	The other function of DNA photolyase: stimulation of excision repair of chemical damage to DNA. <i>Biochemistry</i> , 1995 , 34, 15886-9	3.2	42

(1993-1995)

76	sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity. <i>Biochemistry</i> , 1995 , 34, 6892-9	3.2	243
75	DNA repair in humans. <i>Annual Review of Genetics</i> , 1995 , 29, 69-105	14.5	180
74	Role of tryptophans in substrate binding and catalysis by DNA photolyase. <i>Methods in Enzymology</i> , 1995 , 258, 319-43	1.7	21
73	Photorepair of nonadjacent pyrimidine dimers by DNA photolyase. <i>Photochemistry and Photobiology</i> , 1995 , 61, 171-4	3.6	25
72	Human and E.coli excinucleases are affected differently by the sequence context of acetylaminofluorene-guanine adduct. <i>Nucleic Acids Research</i> , 1994 , 22, 4869-71	20.1	37
71	Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. <i>Nature</i> , 1994 , 368, 769-72	50.4	635
70	Structure and function of DNA photolyase. <i>Biochemistry</i> , 1994 , 33, 2-9	3.2	574
69	Where transcription meets repair. <i>Cell</i> , 1994 , 77, 9-12	56.2	146
68	Flow linear dichroism and electron microscopic analysis of protein-DNA complexes of a mutant UvrB protein that binds to but cannot kink DNA. <i>Journal of Molecular Biology</i> , 1994 , 241, 645-50	6.5	7
67	Laser Flash Photolysis on an Intermediate in the Repair of Pyrimidine Dimers by DNA Photolyase. Journal of the American Chemical Society, 1994 , 116, 3115-3116	16.4	25
66	Characterization of a medium wavelength type DNA photolyase: purification and properties of photolyase from Bacillus firmus. <i>Biochemistry</i> , 1994 , 33, 8712-8	3.2	42
65	Crystallization and preliminary crystallographic analysis of Escherichia coli DNA photolyase. <i>Journal of Molecular Biology</i> , 1993 , 231, 1122-5	6.5	11
64	Tryptophan radical formation in DNA photolyase: electron-spin polarization arising from photoexcitation of a doublet ground state. <i>Journal of the American Chemical Society</i> , 1993 , 115, 1602-1	603 ^{.4}	27
63	DNA photolyase repairs the trans-syn cyclobutane thymine dimer. <i>Biochemistry</i> , 1993 , 32, 7065-8	3.2	25
62	Reconstitution of mammalian excision repair activity with mutant cell-free extracts and XPAC and ERCC1 proteins expressed in Escherichia coli. <i>Nucleic Acids Research</i> , 1993 , 21, 5110-6	20.1	16
61	Photochemistry, photophysics, and mechanism of pyrimidine dimer repair by DNA photolyase. <i>Photochemistry and Photobiology</i> , 1993 , 57, 895-904	3.6	137
60	Nucleotide excision repair. <i>Photochemistry and Photobiology</i> , 1993 , 57, 905-21	3.6	199
59	The photo repair of pyrimidine dimers by DNA photolyase and model systems. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 1993 , 17, 219-28	6.7	68

58	Evidence from photoinduced EPR for a radical intermediate during photolysis of cyclobutane thymine dimer by DNA photolyase. <i>Journal of the American Chemical Society</i> , 1992 , 114, 4442-4443	16.4	42
57	Purification of PCNA as a nucleotide excision repair protein. <i>Nucleic Acids Research</i> , 1992 , 20, 2441-6	20.1	194
56	Energy transfer (deazaflavin>FADH2) and electron transfer (FADH2>T T) kinetics in Anacystis nidulans photolyase. <i>Biochemistry</i> , 1992 , 31, 11244-8	3.2	8o
55	Electron microscopic study of (A)BC excinuclease. DNA is sharply bent in the UvrB-DNA complex. <i>Journal of Molecular Biology</i> , 1992 , 226, 425-32	6.5	73
54	(A)BC excinuclease: the Escherichia coli nucleotide excision repair enzyme. <i>Molecular Microbiology</i> , 1992 , 6, 2219-24	4.1	99
53	Limitations of the in vitro repair synthesis assay for probing the role of DNA repair in platinum resistance. <i>Chemico-Biological Interactions</i> , 1992 , 81, 223-31	5	8
52	Excited quartet states in DNA photolyase. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 1992 , 16, 387-90	6.7	6
51	RecA-dependent incision of psoralen-crosslinked DNA by (A)BC excinuclease. <i>Nucleic Acids Research</i> , 1991 , 19, 657-63	20.1	66
50	Removal of psoralen monoadducts and crosslinks by human cell free extracts. <i>Nucleic Acids Research</i> , 1991 , 19, 4623-9	20.1	43
49	Cloning, sequencing, expression and characterization of DNA photolyase from Salmonella typhimurium. <i>Nucleic Acids Research</i> , 1991 , 19, 4885-90	20.1	31
48	Active site of DNA photolyase: tryptophan-306 is the intrinsic hydrogen atom donor essential for flavin radical photoreduction and DNA repair in vitro. <i>Biochemistry</i> , 1991 , 30, 6322-9	3.2	147
47	Picosecond laser photolysis studies on the photorepair of pyrimidine dimers by DNA photolyase. 1. Laser photolysis of photolyase-2-deoxyuridine dinucleotide photodimer complex. <i>Journal of the American Chemical Society</i> , 1991 , 113, 3143-3145	16.4	84
46	Determination of rates and yields of interchromophore (folateflavin) energy transfer and intermolecular (flavinDNA) electron transfer in Escherichia coli photolyase by time-resolved fluorescence and absorption spectroscopy. <i>Biochemistry</i> , 1991 , 30, 11262-70	3.2	117
45	Effect of base, pentose, and phosphodiester backbone structures on binding and repair of pyrimidine dimers by Escherichia coli DNA photolyase. <i>Biochemistry</i> , 1991 , 30, 8623-30	3.2	115
44	Identification of the different intermediates in the interaction of (A)BC excinuclease with its substrates by DNase I footprinting on two uniquely modified oligonucleotides. <i>Journal of Molecular Biology</i> , 1991 , 219, 27-36	6.5	67
43	The repair patch of E. coli (A)BC excinuclease. <i>Nucleic Acids Research</i> , 1990 , 18, 5051-3	20.1	31
42	Excited-state properties of Escherichia coli DNA photolyase in the picosecond to millisecond time scale. <i>Biochemistry</i> , 1990 , 29, 5694-8	3.2	67
41	Absolute action spectrum of E-FADH2 and E-FADH2-MTHF forms of Escherichia coli DNA photolyase. <i>Biochemistry</i> , 1990 , 29, 7715-27	3.2	91

40	Structure and function of the (A)BC excinuclease of Escherichia coli. <i>Mutation Research DNA Repair</i> , 1990 , 236, 203-11		58
39	Active site of Escherichia coli DNA photolyase: mutations at Trp277 alter the selectivity of the enzyme without affecting the quantum yield of photorepair. <i>Biochemistry</i> , 1990 , 29, 5698-706	3.2	66
38	Reconstitution of Escherichia coli photolyase with flavins and flavin analogues. <i>Biochemistry</i> , 1990 , 29, 5706-11	3.2	66
37	Human nucleotide excision repair in vitro: repair of pyrimidine dimers, psoralen and cisplatin adducts by HeLa cell-free extract. <i>Nucleic Acids Research</i> , 1989 , 17, 4471-84	20.1	140
36	The LexA protein does not bind specifically to the two SOS box-like sequences immediately 5Rto the phr gene. <i>Mutation Research DNA Repair</i> , 1989 , 218, 207-10		14
35	Doublet-quartet intersystem crossing of flavin radical in DNA photolyase. <i>Journal of the American Chemical Society</i> , 1989 , 111, 5967-5969	16.4	40
34	A new mechanism for repairing oxidative damage to DNA: (A)BC excinuclease removes AP sites and thymine glycols from DNA. <i>Biochemistry</i> , 1989 , 28, 7979-84	3.2	167
33	Photoreactivation of killing in E. coli K-12 phr- cells is not caused by pyrimidine dimer reversal. <i>Photochemistry and Photobiology</i> , 1988 , 48, 233-4	3.6	17
32	DNA repair enzymes. Annual Review of Biochemistry, 1988, 57, 29-67	29.1	750
31	Binding of E. coli DNA photolyase to a defined substrate containing a single T mean value of T dimer. <i>Nucleic Acids Research</i> , 1987 , 15, 1109-20	20.1	85
30	Utilization of DNA photolyase, pyrimidine dimer endonucleases, and alkali hydrolysis in the analysis of aberrant ABC excinuclease incisions adjacent to UV-induced DNA photoproducts. <i>Nucleic Acids Research</i> , 1987 , 15, 1227-43	20.1	50
29	The active form of Escherichia coli DNA photolyase contains a fully reduced flavin and not a flavin radical, both in vivo and in vitro. <i>Biochemistry</i> , 1987 , 26, 7121-7	3.2	107
28	Photochemical properties of Escherichia coli DNA photolyase: selective photodecomposition of the second chromophore. <i>Biochemistry</i> , 1987 , 26, 4634-40	3.2	72
27	Structure and function of DNA photolyases. <i>Trends in Biochemical Sciences</i> , 1987 , 12, 259-261	10.3	45
26	High-performance liquid chromatographic separation of platinum complexes containing the cis-1,2-diaminocyclohexane carrier ligand. <i>Analytical Biochemistry</i> , 1986 , 157, 129-43	3.1	29
25	Sequences of the E. coli uvrB gene and protein. <i>Nucleic Acids Research</i> , 1986 , 14, 2637-50	20.1	83
24	Photochemical properties of Escherichia coli DNA photolyase: a flash photolysis study. <i>Biochemistry</i> , 1986 , 25, 8163-6	3.2	57
23	Repair of psoralen and acetylaminofluorene DNA adducts by ABC excinuclease. <i>Journal of Molecular Biology</i> , 1985 , 184, 725-34	6.5	70

22	Binding of Escherichia coli DNA photolyase to UV-irradiated DNA. <i>Biochemistry</i> , 1985 , 24, 1849-55	3.2	68
21	Identification of oligothymidylates as new simple substrates for Escherichia coli DNA photolyase and their use in a rapid spectrophotometric enzyme assay. <i>Biochemistry</i> , 1985 , 24, 1856-61	3.2	66
20	Sequences of the E. coli uvrC gene and protein. <i>Nucleic Acids Research</i> , 1984 , 12, 4593-608	20.1	68
19	Identification of a neutral flavin radical and characterization of a second chromophore in Escherichia coli DNA photolyase. <i>Biochemistry</i> , 1984 , 23, 2673-9	3.2	128
18	Escherichia coli DNA photolyase is a flavoprotein. <i>Journal of Molecular Biology</i> , 1984 , 172, 223-7	6.5	115
17	Analysis of mRNA synthesis following induction of the Escherichia coli SOS system. <i>Journal of Molecular Biology</i> , 1984 , 178, 237-48	6.5	34
16	A novel repair enzyme: UVRABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region. <i>Cell</i> , 1983 , 33, 249-60	56.2	561
15	Identification and amplification of the E. coli phr gene product. <i>Nucleic Acids Research</i> , 1983 , 11, 6667-7	'8 20.1	48
14	Properties and regulation of the UVRABC endonuclease. <i>Biochimie</i> , 1982 , 64, 595-8	4.6	29
13	The uvrB gene of Escherichia coli has both lexA-repressed and lexA-independent promoters. <i>Cell</i> , 1982 , 28, 523-30	56.2	138
12	LexA protein inhibits transcription of the E. coli uvrA gene in vitro. <i>Nature</i> , 1982 , 298, 96-8	50.4	63
11	Identification of the uvrA gene product. <i>Journal of Molecular Biology</i> , 1981 , 148, 45-62	6.5	263
10	Identification of the uvrB gene product. <i>Journal of Molecular Biology</i> , 1981 , 148, 63-76	6.5	86
9	A general approach for purifying proteins encoded by cloned genes without using a functional assay: isolation of the uvrA gene product from radiolabeled maxicells. <i>Nucleic Acids Research</i> , 1981 , 9, 4495-508	20.1	40
8	Amplification of single-strand DNA binding protein in Escherichia coli. <i>Nucleic Acids Research</i> , 1980 , 8, 3215-27	20.1	97
7	Cloning of uvrA, lexC and ssb genes of Escherichia coli. <i>Biochemical and Biophysical Research Communications</i> , 1979 , 90, 123-9	3.4	82
6	Determination of plasmid molecular weights from ultraviolet sensitivities. <i>Nature</i> , 1978 , 272, 471-2	50.4	84
5	Cloning of the phr gene and amplification of photolyase in Escherichia coli. <i>Gene</i> , 1978 , 4, 295-308	3.8	61

LIST OF PUBLICATIONS

Genome-wide circadian rhythm detection methods: systematic evaluations and practical guidelines

Comparative analyses of two primate species diverged by more than 60 million years show different rates but similar distribution of genome-wide UV repair events

CRYPTOCHROMES confer robustness, not rhythmicity, to circadian timekeeping

Nucleotide excision repair hotspots and coldspots of UV-induced DNA damage in the human genome

Nucleotide excision repair hotspots and coldspots of UV-induced DNA damage in the human genome