
ClÃjudia G Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/703046/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water. Journal of the American Chemical Society, 2011, 133, 595-602.	13.7	927
2	Water Stable Zr–Benzenedicarboxylate Metal–Organic Frameworks as Photocatalysts for Hydrogen Generation. Chemistry - A European Journal, 2010, 16, 11133-11138.	3.3	718
3	Layered Double Hydroxides as Highly Efficient Photocatalysts for Visible Light Oxygen Generation from Water. Journal of the American Chemical Society, 2009, 131, 13833-13839.	13.7	488
4	Metal–organic frameworks as semiconductors. Journal of Materials Chemistry, 2010, 20, 3141.	6.7	441
5	Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 155, 133-143.	3.9	325
6	A review on the coal gasification wastewater treatment technologies: past, present and future outlook. Journal of Cleaner Production, 2016, 126, 38-55.	9.3	190
7	Laccase immobilization over multi-walled carbon nanotubes: Kinetic, thermodynamic and stability studies. Journal of Colloid and Interface Science, 2015, 454, 52-60.	9.4	174
8	Photocatalytic and photochemical degradation of mono-, di- and tri-azo dyes in aqueous solution under UV irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 181, 314-324.	3.9	152
9	Ce-doped TiO2 for photocatalytic degradation of chlorophenol. Catalysis Today, 2009, 144, 13-18.	4.4	148
10	Photocatalytic degradation of Chromotrope 2R using nanocrystalline TiO2/activated-carbon composite catalysts. Applied Catalysis B: Environmental, 2007, 70, 470-478.	20.2	145
11	Preparation and characterization of nanostructured MWCNT-TiO2 composite materials for photocatalytic water treatment applications. Materials Research Bulletin, 2008, 43, 958-967.	5.2	143
12	Photocatalytic oxidation of benzene derivatives in aqueous suspensions: Synergic effect induced by the introduction of carbon nanotubes in a TiO2 matrix. Applied Catalysis B: Environmental, 2010, 101, 81-89.	20.2	137
13	Novel hybrids of graphitic carbon nitride sensitized with free-base meso-tetrakis(carboxyphenyl) porphyrins for efficient visible light photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 221, 56-69.	20.2	136
14	Metal-free g-C3N4 photocatalysis of organic micropollutants in urban wastewater under visible light. Applied Catalysis B: Environmental, 2019, 248, 184-192.	20.2	124
15	Enhanced biocatalytic sustainability of laccase by immobilization on functionalized carbon nanotubes/polysulfone membranes. Chemical Engineering Journal, 2019, 355, 974-985.	12.7	124
16	Graphitic carbon nitride modified by thermal, chemical and mechanical processes as metal-free photocatalyst for the selective synthesis of benzaldehyde from benzyl alcohol. Journal of Catalysis, 2017, 353, 44-53.	6.2	109
17	Ag-loaded ZnO materials for photocatalytic water treatment. Chemical Engineering Journal, 2017, 318, 95-102.	12.7	105
18	Homogeneous and heterogeneous photo-Fenton degradation of antibiotics using an innovative static mixer photoreactor. Chemical Engineering Journal, 2017, 310, 342-351.	12.7	94

#	Article	IF	CITATIONS
19	Carbon nanotube–TiO2 thin films for photocatalytic applications. Catalysis Today, 2011, 161, 91-96.	4.4	93
20	Photocatalytic production of hydrogen from methanol and saccharides using carbon nanotube-TiO2 catalysts. Applied Catalysis B: Environmental, 2015, 178, 82-90.	20.2	93
21	βâ€Cyclodextrin as a Precursor to Holey Câ€Doped gâ€C ₃ N ₄ Nanosheets for Photocatalytic Hydrogen Generation. ChemSusChem, 2018, 11, 2681-2694.	6.8	92
22	Synergistic effect between carbon nanomaterials and ZnO for photocatalytic water decontamination. Journal of Catalysis, 2015, 331, 172-180.	6.2	91
23	Photocatalytic degradation of caffeine: Developing solutions for emerging pollutants. Catalysis Today, 2013, 209, 108-115.	4.4	88
24	Photocatalytic nitrate reduction over Pd–Cu/TiO2. Chemical Engineering Journal, 2014, 251, 123-130.	12.7	88
25	Effect of key operational parameters on the photocatalytic oxidation of phenol by nanocrystalline sol–gel TiO2 under UV irradiation. Journal of Molecular Catalysis A, 2009, 305, 147-154.	4.8	86
26	Metal-free carbon nitride photocatalysis with in situ hydrogen peroxide generation for the degradation of aromatic compounds. Applied Catalysis B: Environmental, 2019, 252, 128-137.	20.2	85
27	Graphitic carbon nitride nanosheets as highly efficient photocatalysts for phenol degradation under high-power visible LED irradiation. Materials Research Bulletin, 2018, 100, 322-332.	5.2	75
28	Selective photocatalytic oxidation of benzyl alcohol to benzaldehyde by using metal-loaded g-C3N4 photocatalysts. Catalysis Today, 2017, 287, 70-77.	4.4	72
29	Single-atom Ir and Ru anchored on graphitic carbon nitride for efficient and stable electrocatalytic/photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2022, 310, 121318.	20.2	72
30	Carbon-based TiO2 materials for the degradation of Microcystin-LA. Applied Catalysis B: Environmental, 2015, 170-171, 74-82.	20.2	66
31	Developing highly active photocatalysts: Gold-loaded ZnO for solar phenol oxidation. Journal of Catalysis, 2014, 316, 182-190.	6.2	65
32	Degradation of diclofenac in water under LED irradiation using combined g-C3N4/NH2-MIL-125 photocatalysts. Journal of Hazardous Materials, 2021, 416, 126199.	12.4	64
33	Photocatalytic Oxidation of Phenolic Compounds by Using a Carbon Nanotubeâ€ītanium Dioxide Composite Catalyst. ChemSusChem, 2010, 3, 609-618.	6.8	63
34	Photocatalytic activity of TiO2-coated glass raschig rings on the degradation of phenolic derivatives under simulated solar light irradiation. Chemical Engineering Journal, 2013, 224, 32-38.	12.7	61
35	Photochemical and photocatalytic degradation of trans-resveratrol. Photochemical and Photobiological Sciences, 2013, 12, 638-644.	2.9	59
36	Solar photocatalytic degradation of parabens using UiO-66-NH2. Separation and Purification Technology, 2022, 286, 120467.	7.9	58

#	Article	IF	CITATIONS
37	Anatase vs. rutile efficiency on the photocatalytic degradation of clofibric acid under near UV to visible irradiation. Photochemical and Photobiological Sciences, 2009, 8, 705-711.	2.9	50
38	Photocatalytic performance of Au/ZnO nanocatalysts for hydrogen production from ethanol. Applied Catalysis A: General, 2016, 518, 198-205.	4.3	50
39	Recent Strategies for Hydrogen Peroxide Production by Metal-Free Carbon Nitride Photocatalysts. Catalysts, 2019, 9, 990.	3.5	50
40	Recent Strategies and Applications for l-Asparaginase Confinement. Molecules, 2020, 25, 5827.	3.8	47
41	Photocatalytic synthesis of vanillin using N-doped carbon nanotubes/ZnO catalysts under UV-LED irradiation. Applied Catalysis A: General, 2018, 551, 71-78.	4.3	44
42	Magnetically recoverable Fe3O4/g-C3N4 composite for photocatalytic production of benzaldehyde under UV-LED radiation. Catalysis Today, 2019, 328, 293-299.	4.4	43
43	Nanodiamond–TiO ₂ composites for photocatalytic degradation of microcystin-LA in aqueous solutions under simulated solar light. RSC Advances, 2015, 5, 58363-58370.	3.6	39
44	Efficient removal of parabens from real water matrices by a metal-free carbon nitride photocatalyst. Science of the Total Environment, 2020, 716, 135346.	8.0	37
45	Intensification strategies for improving the performance of photocatalytic processes: A review. Journal of Cleaner Production, 2022, 340, 130800.	9.3	37
46	A strategy for improving peroxidase stability via immobilization on surface modified multi-walled carbon nanotubes. Journal of Chemical Technology and Biotechnology, 2015, 90, 1570-1578.	3.2	29
47	Continuous flow photo-Fenton treatment of ciprofloxacin in aqueous solutions using homogeneous and magnetically recoverable catalysts. Environmental Science and Pollution Research, 2014, 21, 11116-11125.	5.3	28
48	Carbon-nanotube/TiO2 materials synthesized by a one-pot oxidation/hydrothermal route for the photocatalytic production of hydrogen from biomass derivatives. Materials Science in Semiconductor Processing, 2020, 115, 105098.	4.0	28
49	Visible-light-induced self-cleaning functional fabrics using graphene oxide/carbon nitride materials. Applied Surface Science, 2019, 497, 143757.	6.1	27
50	Evaluation of sol–gel TiO 2 photocatalysts modified with carbon or boron compounds and crystallized in nitrogen or air atmospheres. Chemical Engineering Journal, 2015, 277, 11-20.	12.7	26
51	Controlling the Surface Chemistry of Multiwalled Carbon Nanotubes for the Production of Highly Efficient and Stable Laccaseâ€Based Biocatalysts. ChemPlusChem, 2014, 79, 1116-1122.	2.8	23
52	Advances on Graphyneâ€Family Members for Superior Photocatalytic Behavior. Advanced Science, 2021, 8, 2003900.	11.2	22
53	Simultaneous photochemical and photocatalyzed liquid phase reactions: Dye decolorization kinetics. Catalysis Today, 2015, 240, 80-85.	4.4	21
54	Catalytic and Photocatalytic Nitrate Reduction Over Pd-Cu Loaded Over Hybrid Materials of Multi-Walled Carbon Nanotubes and TiO2. Frontiers in Chemistry, 2018, 6, 632.	3.6	21

#	Article	IF	CITATIONS
55	Photo-Fenton degradation assisted by in situ generation of hydrogen peroxide using a carbon nitride photocatalyst. Journal of Water Process Engineering, 2020, 37, 101467.	5.6	21
56	Tailoring the properties of immobilized titanium dioxide/carbon nanotube composites for photocatalytic water treatment. Journal of Environmental Chemical Engineering, 2013, 1, 945-953.	6.7	20
57	Development and characterization of a novel <scp>l</scp> -asparaginase/MWCNT nanobioconjugate. RSC Advances, 2020, 10, 31205-31213.	3.6	20
58	Facile Preparation of ZnO/CNTs Nanocomposites via ALD for Photocatalysis Applications. European Journal of Inorganic Chemistry, 2020, 2020, 1743-1750.	2.0	19
59	MIL-160(Al) MOF's potential in adsorptive water harvesting. Adsorption, 2021, 27, 213-226.	3.0	18
60	Synthesis of selected aromatic aldehydes under UV-LED irradiation over a hybrid photocatalyst of carbon nanofibers and zinc oxide. Catalysis Today, 2019, 328, 286-292.	4.4	16
61	An innovative static mixer photoreactor: Proof of concept. Chemical Engineering Journal, 2016, 287, 419-424.	12.7	14
62	Selective Production of Benzaldehyde Using Metalâ€Free Reduced Graphene Oxide/Carbon Nitride Hybrid Photocatalysts. ChemistrySelect, 2018, 3, 8070-8081.	1.5	14
63	Kinetic modelling for the photocatalytic degradation of phenol by using <scp>TiO₂</scp> â€coated glass raschig rings under simulated solar light. Journal of Chemical Technology and Biotechnology, 2016, 91, 346-352.	3.2	13
64	Water vapor harvesting by a (P)TSA process with MIL-125(Ti)_NH2 as adsorbent. Separation and Purification Technology, 2020, 237, 116336.	7.9	13
65	Selective photocatalytic synthesis of benzaldehyde in microcapillaries with immobilized carbon nitride. Chemical Engineering Journal, 2022, 430, 132643.	12.7	13
66	Adsorption equilibrium of xylene isomers and ethylbenzene on MIL-125(Ti)_NH2: the temperature influence on the para-selectivity. Adsorption, 2018, 24, 715-724.	3.0	12
67	Outstanding response of carbon nitride photocatalysts for selective synthesis of aldehydes under UV-LED irradiation. Catalysis Today, 2020, 357, 32-38.	4.4	12
68	Aqueous solution photocatalytic synthesis of <i>p</i> -anisaldehyde by using graphite-like carbon nitride photocatalysts obtained <i>via</i> the hard-templating route. RSC Advances, 2020, 10, 19431-19442.	3.6	12
69	Atmospheric water harvesting on MIL-100(Fe) upon a cyclic adsorption process. Separation and Purification Technology, 2022, 290, 120803.	7.9	12
70	Enhanced efficiency of the visible-light photocatalytic hydrogen generation by the ruthenium tris(2,2′-bipyridyl)–methyl viologen system in the presence of cucurbit[n]urils. Photochemical and Photobiological Sciences, 2009, 8, 1650.	2.9	10
71	A microfluidic reactor application for the continuous-flow photocatalytic selective synthesis of aromatic aldehydes. Applied Catalysis A: General, 2020, 608, 117844.	4.3	10
72	Sustainable production of value-added chemicals and fuels by using a citric acid-modified carbon nitride optical semiconductor. Applied Catalysis A: General, 2021, 609, 117912.	4.3	10

#	Article	IF	CITATIONS
73	Overview on Protein Extraction and Purification Using Ionic-Liquid-Based Processes. Journal of Solution Chemistry, 2022, 51, 243-278.	1.2	10
74	Graphitic carbon nitride photocatalysis: the hydroperoxyl radical role revealed by kinetic modelling. Catalysis Science and Technology, 2021, 11, 7712-7726.	4.1	10
75	Light-driven oxygen evolution from water oxidation with immobilised TiO2 engineered for high performance. Scientific Reports, 2021, 11, 21306.	3.3	8
76	Structured TiO2 based catalysts for clean water technologies. Studies in Surface Science and Catalysis, 2006, 162, 151-158.	1.5	7
77	Efficiency and stability of metal-free carbon nitride in the photocatalytic ozonation of oxamic acid under visible light. Journal of Environmental Chemical Engineering, 2020, 8, 104172.	6.7	7
78	L-Asparaginase-Based Biosensors. Encyclopedia, 2021, 1, 848-858.	4.5	7
79	Interactions of pharmaceutical compounds in water matrices under visible-driven photocatalysis. Journal of Environmental Chemical Engineering, 2021, 9, 104747.	6.7	6
80	Superior operational stability of immobilized l-asparaginase over surface-modified carbon nanotubes. Scientific Reports, 2021, 11, 21529.	3.3	6
81	Role of TiO2-based photocatalysts on the synthesis of the pharmaceutical precursor benzhydrol by UVA-LED radiation. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 391, 112350.	3.9	4
82	Immobilization and Characterization of L-Asparaginase over Carbon Xerogels. BioTech, 2022, 11, 10.	2.6	4
83	Nanocrystalline CNT-TiO ₂ Composites Produced by an Acid Catalyzed Sol-Gel Method. Materials Science Forum, 2008, 587-588, 849-853.	0.3	3
84	Consecutive Flow Distributor Device for Mesostructured Reactors and Networks of Reactors. Chemical Engineering and Processing: Process Intensification, 2021, 167, 108541.	3.6	3
85	Synthesis of Vitamin B3 through a Heterogeneous Photocatalytic Approach Using Metal-Free Carbon Nitride-Based Catalysts. Molecules, 2022, 27, 1295.	3.8	3
86	Chitosan-based electrolytes containing carbon nanotube-titanium dioxide for energy conversion devices applications. Iranian Polymer Journal (English Edition), 2022, 31, 1197-1208.	2.4	3
87	Treatment of centrifugal mother liquid of polyvinyl chloride by internal circulation aerobic biofilm reactor: Lab to plant scale system. Journal of Cleaner Production, 2018, 200, 568-577.	9.3	2
88	Impact of atomic layer deposited TiO ₂ on the photocatalytic efficiency of TiO ₂ /w-VA-CNT nanocomposite materials. RSC Advances, 2022, 12, 16419-16430.	3.6	2
89	Sustainable Bleaching Process of Raw Cotton by TiO2 Light-Activated Nanoparticles. U Porto Journal of Engineering, 2020, 6, 11-21.	0.4	1
90	Characterization of Biocompatible Nanocomposite based on Silica, Dextran and Lidocaine. Journal of Nanosciences Current Research, 2016, 01, .	1.2	0

#	Article	IF	CITATIONS
91	Biomedical-related applications of functionalized nanomaterials. , 2020, , 205-230.		0
92	Synthesis and performance of a composite photocatalyst based on polyester-supported carbon nitride nanosheets for selective oxidation of anisyl alcohol. Surfaces and Interfaces, 2022, 30, 101938.	3.0	0