Gritsada Sua-iam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7030426/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of printed circuit board dust on the workability and mechanical properties of self-compacting concrete: A preliminary study. Case Studies in Construction Materials, 2022, 16, e00862.	1.7	0
2	The Major Causes of Construction Delays Identified Using the Delphi Technique: Perspectives of Contractors and Consultants in Thailand. International Journal of Civil Engineering, 2021, 19, 319-338.	2.0	3
3	A study on workability and mechanical properties of eco-sustainable self-compacting concrete incorporating PCB waste and fly ash. Journal of Cleaner Production, 2021, 329, 129523.	9.3	17
4	Mechanical properties and electrical resistivity of multiwall carbon nanotubes incorporated into high calcium fly ash geopolymer. Case Studies in Construction Materials, 2021, 15, e00785.	1.7	7
5	Properties of self-compacting concrete prepared with ternary Portland cement-high volume fly ash-calcium carbonate blends. Case Studies in Construction Materials, 2020, 13, e00426.	1.7	18
6	Workability and compressive strength development of self-consolidating concrete incorporating rice husk ash and foundry sand waste – A preliminary experimental study. Construction and Building Materials, 2019, 228, 116813.	7.2	35
7	Effect of granular urea on the properties of self-consolidating concrete incorporating untreated rice husk ash: Flowability, compressive strength and temperature rise. Construction and Building Materials, 2018, 162, 489-502.	7.2	23
8	Effects of calcium carbonate powder on the fresh and hardened properties of self-consolidating concrete incorporating untreated rice husk ash. Journal of Cleaner Production, 2018, 172, 3265-3278.	9.3	26
9	Innovative utilization of foundry sand waste obtained from the manufacture of automobile engine parts as a cement replacement material in concrete production. Journal of Cleaner Production, 2018, 199, 305-320.	9.3	21
10	Incorporation of high-volume fly ash waste and high-volume recycled alumina waste in the production of self-consolidating concrete. Journal of Cleaner Production, 2017, 159, 194-206.	9.3	42
11	Effect of incinerated sugarcane filter cake on the properties of self-compacting concrete. Construction and Building Materials, 2017, 130, 32-40.	7.2	23
12	Novel ternary blends of Type 1 Portland cement, residual rice husk ash, and limestone powder to improve the properties of self-compacting concrete. Construction and Building Materials, 2016, 125, 1028-1034.	7.2	41
13	Recycling of combined coal-biomass ash from electric power plant waste as a cementitious material: characteristics and improvement. Journal of Material Cycles and Waste Management, 2016, 18, 527-540.	3.0	10
14	Characteristics and utilization of sugarcane filter cake waste in the production of lightweight foamed concrete. Journal of Cleaner Production, 2016, 126, 118-133.	9.3	58
15	Utilization of coal- and biomass-fired ash in the production ofÂself-consolidating concrete: a literature review. Journal of Cleaner Production, 2015, 100, 59-76.	9.3	83
16	Rheological and mechanical properties of cement–fly ash self-consolidating concrete incorporating high volumes of alumina-based material as fine aggregate. Construction and Building Materials, 2015, 95, 736-747.	7.2	26
17	Utilization of high volumes of unprocessed lignite-coal fly ash and rice husk ash in self-consolidating concrete. Journal of Cleaner Production, 2014, 78, 184-194.	9.3	121
18	Use of limestone powder during incorporation of Pb-containing cathode ray tube waste in self-compacting concrete. Journal of Environmental Management, 2013, 128, 931-940.	7.8	47

GRITSADA SUA-IAM

#	Article	IF	CITATIONS
19	Use of Unprocessed Rice Husk Ash and Pulverized Fuel Ash in the Production of Self-compacting Concrete. IERI Procedia, 2013, 5, 298-303.	0.3	10
20	Use of recycled alumina as fine aggregate replacement in self-compacting concrete. Construction and Building Materials, 2013, 47, 701-710.	7.2	36
21	Use of increasing amounts of bagasse ash waste to produce self-compacting concrete by adding limestone powder waste. Journal of Cleaner Production, 2013, 57, 308-319.	9.3	123
22	Utilization of limestone powder to improve the properties of self-compacting concrete incorporating high volumes of untreated rice husk ash as fine aggregate. Construction and Building Materials, 2013, 38, 455-464.	7.2	125
23	Self-Compacting Concrete Incorporating Various Ratios of Rice Husk Ash in Portland Cement. Chiang Mai University Journal of Natural Sciences, 2013, 12, .	0.1	2
24	Self-Compacting Concrete Prepared Using Rice Husk Ash Waste from Electric Power Plants. Advanced Materials Research, 2012, 488-489, 258-262.	0.3	5
25	Use of Limestone Powder to Improve the Properties of Self-Compacting Concrete Produced Using Cathode Ray Tube Waste as Fine Aggregate. Applied Mechanics and Materials, 0, 193-194, 472-476.	0.2	4
26	Effect of Superplasticizer Type and Dosage on early-Age Shrinkage of Portland Cement and Rice Husk Ash Pastes. Advanced Materials Research, 0, 450-451, 407-412.	0.3	1