Xinghua Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7030362/publications.pdf

Version: 2024-02-01

61945 66879 6,143 80 43 78 citations h-index g-index papers 80 80 80 8348 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	<scp>Heteroâ€Janus</scp> Nanofibers as an Ideal Framework for Promoting Waterâ€pollutant Photoreforming Hydrogen Evolution. Energy and Environmental Materials, 2023, 6, .	7.3	1
2	Synchronous-ultrahigh conductive-reactive N-atoms doping strategy of carbon nanofibers networks for highâ€performance flexible energy storage. Energy Storage Materials, 2022, 44, 250-262.	9.5	35
3	Anchoring bismuth oxybromo-iodide solid solutions on flexible electrospun polyacrylonitrile nanofiber mats for floating photocatalysis. Journal of Colloid and Interface Science, 2022, 608, 3178-3191.	5.0	13
4	A review on sustainable synthetic approaches toward photoluminescent quantum dots. Green Chemistry, 2022, 24, 675-700.	4.6	26
5	Highly permeable WO3/CuWO4 heterostructure with 3D hierarchical porous structure for high-sensitive room-temperature visible-light driven gas sensor. Sensors and Actuators B: Chemical, 2022, 365, 131926.	4.0	26
6	Three-dimensional porous CuFe2O4 for visible-light-driven peroxymonosulfate activation with superior performance for the degradation of tetracycline hydrochloride. Chemical Engineering Journal, 2022, 445, 136616.	6.6	27
7	Construction of In2O3/ZnO yolk-shell nanofibers for room-temperature NO2 detection under UV illumination. Journal of Hazardous Materials, 2021, 403, 124093.	6.5	75
8	Facile preparation of flexible polyacrylonitrile/BiOCl/BiOI nanofibers via SILAR method for effective floating photocatalysis. Journal of Sol-Gel Science and Technology, 2021, 97, 610-621.	1.1	12
9	Photogenerated carrier separation and localized surface plasmon resonance in SnS2@AuNPs Janus heterostructures for enhanced visible light catalysis. Materials Chemistry and Physics, 2021, 267, 124702.	2.0	7
10	Ternary NiTiO ₃ @g-C ₃ N ₄ â€"Au nanofibers with a synergistic Z-scheme core@shell interface and dispersive Schottky contact surface for enhanced solar photocatalytic activity. Materials Chemistry Frontiers, 2021, 5, 2730-2741.	3.2	14
11	Flexible Allâ€Inorganic Roomâ€Temperature Chemiresistors Based on Fibrous Ceramic Substrate and Visibleâ€Lightâ€Powered Semiconductor Sensing Layer. Advanced Science, 2021, 8, e2102471.	5.6	21
12	Nitrogen doping polyvinylpyrrolidone-based carbon nanofibers via pyrolysis of g-C3N4 with tunable chemical states and capacitive energy storage. Electrochimica Acta, 2020, 330, 135212.	2.6	38
13	TiO ₂ /SrTiO ₃ /g-C ₃ N ₄ ternary heterojunction nanofibers: gradient energy band, cascade charge transfer, enhanced photocatalytic hydrogen evolution, and nitrogen fixation. Nanoscale, 2020, 12, 8320-8329.	2.8	88
14	Discrete heterojunction nanofibers of BiFeO3/Bi2WO6: Novel architecture for effective charge separation and enhanced photocatalytic performance. Journal of Colloid and Interface Science, 2020, 572, 257-268.	5.0	60
15	MoSe ₂ /TiO ₂ Nanofibers for Cycling Photocatalytic Removing Water Pollutants under UV–Vis–NIR Light. ACS Applied Nano Materials, 2020, 3, 2278-2287.	2.4	35
16	Sn-doping induced oxygen vacancies on the surface of the In2O3 nanofibers and their promoting effect on sensitive NO2 detection at low temperature. Sensors and Actuators B: Chemical, 2020, 317, 128194.	4.0	60
17	Highly electron-depleted ZnO/ZnFe2O4/Au hollow meshes as an advanced material for gas sensing application. Sensors and Actuators B: Chemical, 2019, 297, 126769.	4.0	42
18	Hierarchically Porous In2O3/In2S3 Heterostructures as Micronano Photocatalytic Reactors Prepared by a Novel Polymer-Assisted Sol–Gel Freeze-Drying Method. Industrial & Engineering Chemistry Research, 2019, 58, 14106-14114.	1.8	25

#	Article	IF	CITATIONS
19	ZnO/ZnFe ₂ O ₄ Janus Hollow Nanofibers with Magnetic Separability for Photocatalytic Degradation of Water-Soluble Organic Dyes. ACS Applied Nano Materials, 2019, 2, 4879-4890.	2.4	38
20	Composition-controllable p-CuO/n-ZnO hollow nanofibers for high-performance H2S detection. Sensors and Actuators B: Chemical, 2019, 285, 495-503.	4.0	82
21	Direct Z-scheme heterostructure of p-CuAl2O4/n-Bi2WO6 composite nanofibers for efficient overall water splitting and photodegradation. Journal of Colloid and Interface Science, 2019, 550, 170-179.	5.0	71
22	Reusable and Flexible g-C ₃ PO ₄ /Polyacrylonitrile Heterojunction Nanofibers for Photocatalytic Dye Degradation and Oxygen Evolution. ACS Applied Nano Materials, 2019, 2, 3081-3090.	2.4	58
23	Hollow CuFe2O4/α-Fe2O3 composite with ultrathin porous shell for acetone detection at ppb levels. Sensors and Actuators B: Chemical, 2018, 258, 436-446.	4.0	61
24	Bismuth oxychloride (BiOCl)/copper phthalocyanine (CuTNPc) heterostructures immobilized on electrospun polyacrylonitrile nanofibers with enhanced activity for floating photocatalysis. Journal of Colloid and Interface Science, 2018, 525, 187-195.	5.0	40
25	Immobilization of ZnO/polyaniline heterojunction on electrospun polyacrylonitrile nanofibers and enhanced photocatalytic activity. Materials Chemistry and Physics, 2018, 214, 507-515.	2.0	35
26	Controllable preparation of three-dimensional porous WO3 with enhanced visible light photocatalytic activity via a freeze-drying method. Journal of Materials Science: Materials in Electronics, 2018, 29, 9605-9612.	1.1	4
27	Molybdenum diselenide nanosheet/carbon nanofiber heterojunctions: Controllable fabrication and enhanced photocatalytic properties with a broad-spectrum response from visible to infrared light. Journal of Colloid and Interface Science, 2018, 518, 1-10.	5.0	28
28	Heterojunction of <i>g</i> -C3N4/BiOI Immobilized on Flexible Electrospun Polyacrylonitrile Nanofibers: Facile Preparation and Enhanced Visible Photocatalytic Activity for Floating Photocatalysis. ACS Sustainable Chemistry and Engineering, 2018, 6, 2316-2323.	3.2	132
29	Hierarchical heterostructures of p-type bismuth oxychloride nanosheets on n-type zinc ferrite electrospun nanofibers with enhanced visible-light photocatalytic activities and magnetic separation properties. Journal of Colloid and Interface Science, 2018, 516, 110-120.	5.0	42
30	Bi2WO6/ZnFe2O4 heterostructures nanofibers: Enhanced visible-light photocatalytic activity and magnetically separable property. Materials Research Bulletin, 2018, 104, 124-133.	2.7	34
31	Magnetically separable Bi2MoO6/ZnFe2O4 heterostructure nanofibers: Controllable synthesis and enhanced visible light photocatalytic activity. Journal of Alloys and Compounds, 2018, 747, 916-925.	2.8	50
32	Three dimensional hierarchical heterostructures of g-C3N4 nanosheets/TiO2 nanofibers: Controllable growth via gas-solid reaction and enhanced photocatalytic activity under visible light. Journal of Hazardous Materials, 2018, 344, 113-122.	6.5	116
33	Electrospun CuAl ₂ O ₄ hollow nanofibers as visible light photocatalyst with enhanced activity and excellent stability under acid and alkali conditions. CrystEngComm, 2018, 20, 312-322.	1.3	18
34	Enhanced Full-Spectrum-Response Photocatalysis and Reusability of MoSe ₂ via Hierarchical N-Doped Carbon Nanofibers as Heterostructural Supports. ACS Sustainable Chemistry and Engineering, 2018, 6, 14314-14322.	3.2	16
35	Immobilization of ultrafine Ag nanoparticles on well-designed hierarchically porous silica for high-performance catalysis. Journal of Colloid and Interface Science, 2018, 530, 345-352.	5.0	19
36	Graphitic carbon nitride/BiOI loaded on electrospun silica nanofibers with enhanced photocatalytic activity. Applied Surface Science, 2018, 455, 952-962.	3.1	46

#	Article	IF	Citations
37	Bi2MoO6/BiFeO3 heterojunction nanofibers: Enhanced photocatalytic activity, charge separation mechanism and magnetic separability. Journal of Colloid and Interface Science, 2018, 529, 404-414.	5.0	99
38	Assembling n-Bi ₂ MoO ₆ Nanosheets on Electrospun p-CuAl ₂ O ₄ Hollow Nanofibers: Enhanced Photocatalytic Activity Based on Highly Efficient Charge Separation and Transfer. ACS Sustainable Chemistry and Engineering, 2018, 6, 10714-10723.	3.2	59
39	Octahedral-Like CuO/In ₂ O ₃ Mesocages with Double-Shell Architectures: Rational Preparation and Application in Hydrogen Sulfide Detection. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44632-44640.	4.0	46
40	A facile fabrication of nitrogen-doped electrospun In 2 O 3 nanofibers with improved visible-light photocatalytic activity. Applied Surface Science, 2017, 391, 668-676.	3.1	40
41	Fabrication of g-C3N4/SiO2-Au composite nanofibers with enhanced visible photocatalytic activity. Ceramics International, 2017, 43, 15699-15707.	2.3	34
42	Heterojunctions of p-BiOI Nanosheets/n-TiO2 Nanofibers: Preparation and Enhanced Visible-Light Photocatalytic Activity. Materials, 2016, 9, 90.	1.3	35
43	CuO nanoparticles/nitrogen-doped carbon nanofibers modified glassy carbon electrodes for non-enzymatic glucose sensors with improved sensitivity. Ceramics International, 2016, 42, 11285-11293.	2.3	69
44	Facile in situ synthesis of plasmonic nanoparticles-decorated g-C ₃ N ₄ /TiO ₂ heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H ₂ evolution. Nanoscale, 2016, 8, 11034-11043.	2.8	204
45	Freestanding hierarchically porous carbon framework decorated by polyaniline as binder-free electrodes for high performance supercapacitors. Journal of Power Sources, 2016, 329, 516-524.	4.0	44
46	Room temperature immobilized BiOI nanosheets on flexible electrospun polyacrylonitrile nanofibers with high visible-light photocatalytic activity. Journal of Sol-Gel Science and Technology, 2016, 80, 783-792.	1.1	12
47	3D MoS 2 nanosheet/TiO 2 nanofiber heterostructures with enhanced photocatalytic activity under UV irradiation. Journal of Alloys and Compounds, 2016, 686, 137-144.	2.8	69
48	Electrospun Carbon Nanofibers/Carbon Nanotubes/Polyaniline Ternary Composites with Enhanced Electrochemical Performance for Flexible Solid-State Supercapacitors. ACS Sustainable Chemistry and Engineering, 2016, 4, 1689-1696.	3.2	90
49	Flexible solid-state supercapacitors based on freestanding nitrogen-doped porous carbon nanofibers derived from electrospun polyacrylonitrile@polyaniline nanofibers. Journal of Materials Chemistry A, 2016, 4, 4180-4187.	5.2	203
50	Three-dimensional freestanding hierarchically porous carbon materials as binder-free electrodes for supercapacitors: high capacitive property and long-term cycling stability. Journal of Materials Chemistry A, 2016, 4, 5623-5631.	5.2	89
51	Polyaniline-coated electrospun carbon nanofibers with high mass loading and enhanced capacitive performance as freestanding electrodes for flexible solid-state supercapacitors. Energy, 2016, 95, 233-241.	4.5	122
52	Hydrothermal synthesis of carbon-rich graphitic carbon nitride nanosheets for photoredox catalysis. Journal of Materials Chemistry A, 2015, 3, 3281-3284.	5. 2	113
53	Flexible solid-state supercapacitors based on freestanding electrodes of electrospun polyacrylonitrile@polyaniline core-shell nanofibers. Electrochimica Acta, 2015, 176, 293-300.	2.6	46
54	Hierarchical heterostructures of p-type BiOCl nanosheets on electrospun n-type TiO2 nanofibers with enhanced photocatalytic activity. Catalysis Communications, 2015, 67, 6-10.	1.6	70

#	Article	IF	CITATIONS
55	Bias-polarity-dependent UV/visible transferable electroluminescence from ZnO nanorod array LED with graphene oxide electrode supporting layer. Applied Physics Express, 2015, 8, 095202.	1.1	5
56	In 2S3/carbon nanofibers/Au ternary synergetic system: Hierarchical assembly and enhanced visible-light photocatalytic activity. Journal of Hazardous Materials, 2015, 283, 599-607.	6.5	43
57	Controllable synthesis and enhanced visible photocatalytic degradation performances of Bi2WO6–carbon nanofibers heteroarchitectures. Journal of Sol-Gel Science and Technology, 2014, 70, 149-158.	1.1	12
58	<i>p</i> -MoO ₃ Nanostructures/ <i>n</i> -TiO ₂ Nanofiber Heterojunctions: Controlled Fabrication and Enhanced Photocatalytic Properties. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9004-9012.	4.0	148
59	CuO/Cu ₂ O nanofibers as electrode materials for non-enzymatic glucose sensors with improved sensitivity. RSC Advances, 2014, 4, 31056.	1.7	79
60	One-dimensional heterostructures of beta-nickel hydroxide nanoplates/electrospun carbon nanofibers: Controlled fabrication and high capacitive property. International Journal of Hydrogen Energy, 2014, 39, 16162-16170.	3.8	14
61	BiOCl nanosheets immobilized on electrospun polyacrylonitrile nanofibers with high photocatalytic activity and reusable property. Applied Surface Science, 2013, 285, 509-516.	3.1	70
62	An electron-rich free-standing carbon@Au core–shell nanofiber network as a highly active and recyclable catalyst for the reduction of 4-nitrophenol. Physical Chemistry Chemical Physics, 2013, 15, 10453.	1.3	69
63	Hierarchical assembly of ultrathin hexagonal SnS ₂ nanosheets onto electrospun TiO ₂ nanofibers: enhanced photocatalytic activity based on photoinduced interfacial charge transfer. Nanoscale, 2013, 5, 606-618.	2.8	344
64	One-dimensional hierarchical heterostructures of In2S3 nanosheets on electrospun TiO2 nanofibers with enhanced visible photocatalytic activity. Journal of Hazardous Materials, 2013, 260, 892-900.	6.5	103
65	Anisotropic strained cubic MgZnO/MgO multiple-quantum-well nanorods: Growths and optical properties. Applied Physics Letters, 2013, 102, 031905.	1.5	11
66	Waveband-dependent photochemical processing of graphene oxide in fabricating reduced graphene oxide film and graphene oxide–Ag nanoparticles film. RSC Advances, 2013, 4, 2404-2408.	1.7	25
67	Carbon-modified BiVO4 microtubes embedded with Ag nanoparticles have high photocatalytic activity under visible light. Nanoscale, 2012, 4, 7501.	2.8	82
68	In situ assembly of well-dispersed Au nanoparticles on TiO2/ZnO nanofibers: A three-way synergistic heterostructure with enhanced photocatalytic activity. Journal of Hazardous Materials, 2012, 237-238, 331-338.	6.5	113
69	Thermally Stable Pyrochlore <scp><scp>Y₂Ti₂O₇</scp></scp> : <scp><scp>Eu³⁺</scp></scp> Orangeâ€"Red Emitting Phosphors. Journal of the American Ceramic Society, 2012, 95, 658-662.	1.9	36
70	In situ assembly of well-dispersed gold nanoparticles on electrospun silica nanotubes for catalytic reduction of 4-nitrophenol. Chemical Communications, 2011, 47, 3906.	2.2	276
71	Enhanced ultraviolet emission from highly dispersed ZnO quantum dots embedded in poly(vinyl) Tj ETQq1 1 0.7	784314 rgB 5.0	T /Qyerlock 1
72	Electrospun nanofibers of V-doped TiO2 with high photocatalytic activity. Journal of Colloid and Interface Science, 2010, 351, 57-62.	5.0	121

XINGHUA LI

#	Article	lF	CITATION
73	Electrospun Nanofibers of <i>p</i> -Type NiO/ <i>n</i> -Type ZnO Heterojunctions with Enhanced Photocatalytic Activity. ACS Applied Materials & Samp; Interfaces, 2010, 2, 2915-2923.	4.0	574
74	Photo-assisted preparation and patterning of large-area reduced graphene oxide–TiO2 conductive thin film. Chemical Communications, 2010, 46, 3499.	2.2	105
75	Electrospun Nanofibers of ZnOâ^'SnO ₂ Heterojunction with High Photocatalytic Activity. Journal of Physical Chemistry C, 2010, 114, 7920-7925.	1.5	345
76	Microphotoluminescence investigation on single ZnO microrods with different morphologies. Journal of Applied Physics, 2009, 105 , .	1.1	2
77	Polyacrylonitrile and Carbon Nanofibers with Controllable Nanoporous Structures by Electrospinning. Macromolecular Materials and Engineering, 2009, 294, 673-678.	1.7	119
78	Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers. Journal of Colloid and Interface Science, 2009, 333, 242-248.	5.0	183
79	ZnO Hollow Nanofibers: Fabrication from Facile Single Capillary Electrospinning and Applications in Gas Sensors. Journal of Physical Chemistry C, 2009, 113, 19397-19403.	1.5	189
80	Waterâ^'Dichloromethane Interface Controlled Synthesis of Hierarchical Rutile TiO ₂ Superstructures and Their Photocatalytic Properties. Inorganic Chemistry, 2009, 48, 1105-1113.	1.9	92