Shanamugasundaram Thangaraju

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7030255/publications.pdf

Version: 2024-02-01

759233 794594 23 1,129 12 19 citations h-index g-index papers 23 23 23 1010 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Effect of copper on microstructural evolution and mechanical properties of laser-welded CoCrFeNi high entropy alloy. Science and Technology of Welding and Joining, 2022, 27, 197-203.	3.1	11
2	Microstructural evolution in CoCrFeNi and CoCrCuFeNi alloys processed by autogenous fusion welding. Materials Science and Technology, 2022, 38, 1127-1133.	1.6	3
3	Role of Al and Cr on cyclic oxidation behavior of AlCoCrFeNi2 high entropy alloy. Journal of Alloys and Compounds, 2022, 919, 165820.	5.5	16
4	The possibility of synthesizing an Al-based bulk metallic glass using powder metallurgy route. Materials Today: Proceedings, 2021, 41, 1060-1068.	1.8	0
5	Quantitative Phase Prediction in Dualâ€Phase Highâ€Entropy Alloys: Computationally Aided Parametric Approach. Physica Status Solidi (B): Basic Research, 2021, 258, 2100106.	1.5	4
6	Effect of Welding Parameters and Artificial Aging on Mechanical Properties of Friction Stir Welded AA 7004 Alloys: Experimental and Artificial Neural Network Simulation. Metallography, Microstructure, and Analysis, 2021, 10, 515-524.	1.0	1
7	Hybrid particles dispersion strengthened aluminum metal matrix composite processed by stir casting. Materials Today: Proceedings, 2021, 39, 1210-1214.	1.8	3
8	Development of a novel light weight Al35Cr14Mg6Ti35V10 high entropy alloy using mechanical alloying and spark plasma sintering. Journal of Alloys and Compounds, 2020, 820, 153367.	5.5	46
9	Structure-property relationships in hot forged AlxCoCrFeNi high entropy alloys. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2020, 793, 139877.	5. 6	37
10	Microstructure and Mechanical Properties of AA7005 Alloy Joint by Fusion and Solid-State Welding Processes. Transactions of the Indian Institute of Metals, 2020, 73, 1503-1507.	1.5	0
11	Fabrication of AA7005/TiB2-B4C surface composite by friction stir processing: Evaluation of ballistic behaviour. Defence Technology, 2019, 15, 363-368.	4.2	44
12	Interâ€Dependency Relationships in Highâ€Entropy Alloys: Phase Stability Criteria. Advanced Engineering Materials, 2019, 21, 1900251.	3.5	12
13	High temperature wear in CoCrFeNiCux high entropy alloys: The role of Cu. Scripta Materialia, 2019, 161, 28-31.	5.2	237
14	Phase Stability of a Mechanically Alloyed CoCrCuFeNi High Entropy Alloy. Advanced Engineering Materials, 2017, 19, 1700095.	3.5	41
15	Strengthening and weakening by repeated dynamic impact in microcrystals and nanocrystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 639, 97-102.	5.6	4
16	On grain refinement of a \hat{I}^3 -TiAl alloy using cryo-milling followed by spark plasma sintering. Intermetallics, 2015, 66, 141-148.	3.9	25
17	Effect of Y2O3 on Spark Plasma Sintering Kinetics of Nanocrystalline 9Cr-1Mo Ferritic Oxide Dispersion-Strengthened Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4037-4041.	2.2	6
18	On the Estimation of True Hall–Petch Constants and Their Role on the Superposition Law Exponent in Al Alloys. Advanced Engineering Materials, 2012, 14, 892-897.	3.5	82

2

#	Article	IF	CITATIONS
19	Temperature dependence of the strength of fine- and ultrafine-grained materials. Acta Materialia, 2011, 59, 1300-1308.	7.9	123
20	On the Hall–Petch relationship in a nanostructured Al–Cu alloy. Materials Science & Depth Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7821-7825.	5.6	178
21	Microstructure and Mechanical Properties of Nanostructured Al-4Cu Alloy Produced by Mechanical Alloying and Vacuum Hot Pressing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 2798-2801.	2.2	48
22	Development of ultrafine grained high strength Al–Cu alloy by cryorolling. Scripta Materialia, 2006, 54, 2013-2017.	5.2	201
23	Thermal Stability of Vacuum Hot Pressed Bulk Nanostructured Al-Cu Alloys. Materials Science Forum, 0, 690, 234-237.	0.3	7