Narciso Campos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7029953/publications.pdf

Version: 2024-02-01

38 papers 2,640 citations

28 h-index

330025 37 g-index

38 all docs $\frac{38}{\text{docs citations}}$

38 times ranked

2342 citing authors

#	Article	IF	Citations
1	Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant Journal, 2000, 22, 503-513.	2.8	413
2	Expression and Molecular Analysis of the ArabidopsisDXR Gene Encoding 1-Deoxy-d-Xylulose 5-Phosphate Reductoisomerase, the First Committed Enzyme of the 2-C-Methyl-d-Erythritol 4-Phosphate Pathway. Plant Physiology, 2002, 129, 1581-1591.	2.3	203
3	Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants overexpressing deoxyxylulose 5-phosphate reductoisomerase. Plant Molecular Biology, 2006, 62, 683-695.	2.0	203
4	1-Deoxy-d-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening. Plant Journal, 2001, 27, 213-222.	2.8	163
5	Isoprenoid Biosynthesis through the Methylerythritol Phosphate Pathway: The (E)-4-Hydroxy-3-methylbut-2-enyl Diphosphate Synthase (GcpE) is a [4Fe–4S] Protein. Angewandte Chemie - International Edition, 2002, 41, 4337-4339.	7.2	106
6	Subcellular Localization of Arabidopsis 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase. Plant Physiology, 2005, 137, 57-69.	2.3	102
7	Multilevel Control of <i>Arabidopsis</i> <io>li> 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase by Protein Phosphatase 2A. Plant Cell, 2011, 23, 1494-1511.</io>	3.1	99
8	The protein quality control system manages plant defence compound synthesis. Nature, 2013, 504, 148-152.	13.7	99
9	Genetic evidence of branching in the isoprenoid pathway for the production of isopentenyl diphosphate and dimethylallyl diphosphate in Escherichia coli. FEBS Letters, 2000, 473, 328-332.	1.3	98
10	Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate: a novel system for the genetic analysis of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis. Biochemical Journal, 2001, 353, 59-67.	1.7	96
11	Cutting Edge: Human $\hat{i}^3\hat{l}^*T$ Cells Are Activated by Intermediates of the 2- <i>C</i> methyl- <scp>d</scp> -erythritol 4-phosphate Pathway of Isoprenoid Biosynthesis. Journal of Immunology, 2001, 166, 3655-3658.	0.4	80
12	The use of an alternative promoter in the Arabidopsis thaliana HMG1 gene generates an mRNA that encodes a novel 3-hydroxy-3-methylglutaryl coenzyme A reductase isoform with an extended N-terminal region. Plant Journal, 1995, 8, 541-549.	2.8	77
13	Isoprenoid biosynthesis via the methylerythritol phosphate pathway. (E)-4-Hydroxy-3-methylbut-2-enyl diphosphate: chemical synthesis and formation from methylerythritol cyclodiphosphate by a cell-free system from Escherichia coli. Tetrahedron Letters, 2002, 43, 2555-2559.	0.7	75
14	Identification of gcpE as a novel gene of the 2-C -methyl-D -erythritol 4-phosphate pathway for isoprenoid biosynthesis in Escherichia coli. FEBS Letters, 2001, 488, 170-173.	1.3	73
15	Functional analysis of theArabidopsis thalianaGCPE protein involved in plastid isoprenoid biosynthesis. FEBS Letters, 2002, 514, 343-346.	1.3	68
16	A protein from maize labeled with azidoâ€IAA has novel βâ€glucosidase activity. Plant Journal, 1992, 2, 675-684.	2.8	61
17	Deuterium-labelled isotopomers of 2-C-methyl-d-erythritol as tools for the elucidation of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis. Biochemical Journal, 2000, 346, 737-742.	1.7	61
18	Mevalonate Biosynthesis in Plants. Critical Reviews in Biochemistry and Molecular Biology, 1999, 34, 107-122.	2.3	56

#	Article	lF	CITATIONS
19	Incorporation of [2,3-13C2]- and [2,4-13C2]-d-1-Deoxyxylulose into Ubiquinone of Escherichia coli via the Mevalonate-Independent Pathway for Isoprenoid Biosynthesis. Tetrahedron Letters, 1998, 39, 23-26.	0.7	53
20	Hormonal modulation of plant growth: the role of auxin perception. Mechanisms of Development, 1991, 33, 97-106.	1.7	51
21	Characterisation of the gene family encoding acetoacetyl-CoA thiolase in Arabidopsis. Functional Plant Biology, 2008, 35, 1100.	1.1	42
22	Modulation of plant HMG-CoA reductase by protein phosphatase 2A. Plant Signaling and Behavior, 2011, 6, 1127-1131.	1.2	41
23	Isoprenoid biosynthesis in Escherichia coli via the methylerythritol phosphate pathway: enzymatic conversion of methylerythritol cyclodiphosphate into a phosphorylated derivative of (E)-2-methylbut-2-ene-1,4-diol. Tetrahedron Letters, 2002, 43, 1413-1415.	0.7	37
24	Diversity of 7 SL RNA from the signal recognition particle of maize endosperm. Nucleic Acids Research, 1989, 17, 1573-1588.	6.5	33
25	Isoprenoid biosynthesis via the methylerythritol phosphate pathway: accumulation of 2- C -methyl- d -erythritol 2,4-cyclodiphosphate in a gcpE deficient mutant of Escherichia coli. Tetrahedron Letters, 2002, 43, 775-778.	0.7	33
26	Functional and evolutionary analysis of DXL1, a non-essential gene encoding a 1-deoxy-D-xylulose 5-phosphate synthase like protein in Arabidopsis thaliana. Gene, 2013, 524, 40-53.	1.0	32
27	Proliferation and Morphogenesis of the Endoplasmic Reticulum Driven by the Membrane Domain of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase in Plant Cells. Plant Physiology, 2015, 168, 899-914.	2.3	32
28	Arabidopsis thaliana expresses two functional isoforms of Arvp, a protein involved in the regulation of cellular lipid homeostasis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 725-735.	1.2	29
29	Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate: a novel system for the genetic analysis of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid biosynthesis. Biochemical Journal, 2000, 353, 59.	1.7	28
30	Deuterium-labelled isotopomers of 2-C-methyl-D-erythritol as tools for the elucidation of the 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid biosynthesis. Biochemical Journal, 2000, 346, 737.	1.7	23
31	An engineered extraplastidial pathway for carotenoid biofortification of leaves. Plant Biotechnology Journal, 2021, 19, 1008-1021.	4.1	23
32	Title is missing!. Angewandte Chemie, 2002, 114, 4513-4515.	1.6	16
33	5-Hydroxypentane-2,3-dione (laurencione), a bacterial metabolite of 1-deoxy-D- threo -pentulose. Tetrahedron Letters, 1998, 39, 6185-6188.	0.7	11
34	Loose Morphology and High Dynamism of OSER Structures Induced by the Membrane Domain of HMG-CoA Reductase. International Journal of Molecular Sciences, 2021, 22, 9132.	1.8	8
35	Determination of 3-Hydroxy-3-methylglutaryl CoA Reductase Activity in Plants. Methods in Molecular Biology, 2014, 1153, 21-40.	0.4	7
36	Biosynthesis of Isoprenoid Precursors in Arabidopsis. , 2012, , 439-456.		5

#	Article	IF	CITATIONS
37	Molecular Analysis of an Auxin Binding Protein Gene Located on Chromosome 4 of Arabidopsis. Plant Cell, 1992, 4, 193.	3.1	2
38	Chapter 5 Photoaffinity Labeling and Strategies for Plasma Membrane Protein Purification. Methods in Cell Biology, 1995, 50, 51-60.	0.5	1