
Xiao-Hui Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7029868/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mg,Ti-base surface integrated layer and bulk doping to suppress lattice oxygen evolution of Ni-rich cathode material at a high cut-off voltage. Journal of Energy Chemistry, 2022, 71, 434-444.	7.1	23
2	Ultrafine ZnS nanoparticles embedded in N-doped carbon as advanced anode materials for lithium ion batteries. Journal of Alloys and Compounds, 2022, 910, 164783.	2.8	14
3	Modifying the Cathode–Electrolyte Interphase by Sulfone-Based Additive to Enhance the Electrochemical Performance of LiNi _{0.5} Mn _{1.5} O ₄ . ACS Applied Energy Materials, 2022, 5, 639-647.	2.5	7
4	Preparation of graphene/copper composites with a thiophenol molecular junction for thermal conduction application. New Journal of Chemistry, 2022, 46, 10107-10116.	1.4	3
5	Construction of internal electric field to suppress oxygen evolution of Ni-rich cathode materials at a high cutoff voltage. Journal of Energy Chemistry, 2022, 73, 114-125.	7.1	13
6	Biomass-derived O, N-codoped hierarchically porous carbon prepared by black fungus and Hericium erinaceus for high performance supercapacitor. RSC Advances, 2021, 11, 27860-27867.	1.7	7
7	Control of the interface graphitized/amorphous carbon of biomass-derived carbon microspheres for symmetric supercapacitors. Nanoscale Advances, 2021, 3, 4858-4865.	2.2	14
8	Hierarchical Fe ₂ O ₃ @MoS ₂ /C Nanorods as Anode Materials for Sodium Ion Batteries with High Cycle Stability. ACS Applied Energy Materials, 2021, 4, 3757-3765.	2.5	12
9	Enhanced electrochemical performance of Ni-rich cathode material by N-doped LiAlO2 surface modification for lithium-ion batteries. Electrochimica Acta, 2021, 372, 137882.	2.6	18
10	Microwave-Assisted Preparation of Hierarchical N and O Co-Doped Corn-Cob-Derived Activated Carbon for a High-Performance Supercapacitor. Energy & amp; Fuels, 2021, 35, 8334-8344.	2.5	19
11	Phase Compatible NiFe ₂ O ₄ Coating Tunes Oxygen Redox in Li-Rich Layered Oxide. ACS Nano, 2021, 15, 11607-11618.	7.3	95
12	Bifunctional Surface Coating of LiAlO ₂ /Si _{1–<i>x</i>} Al _{<i>x</i>} O ₂ Hybrid Layer on Ni-Rich Cathode Materials for High Performance Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 8951-8961.	3.2	8
13	Heterostructured SnS-ZnS@C nanoparticles embedded in expanded graphite as advanced anode materials for lithium ion batteries. Chemical Physics Letters, 2021, 775, 138662.	1.2	6
14	Application of H4P2O7 as leaching acid in one-step selective recovery for metals from spent LiFePO4 batteries. Ionics, 2021, 27, 5127-5135.	1.2	10
15	Phenylamine-Functionalized Graphene–Copper Composites with High Thermal Conductivity: Implications for Thermal Dissipation. ACS Applied Nano Materials, 2021, 4, 12170-12179.	2.4	4
16	Constructing 2D SnS@C nanosheets anchored on interconnected carbon nanotube networks as advanced anode materials for lithium ion and sodium ion batteries. Journal of Alloys and Compounds, 2020, 821, 153551.	2.8	20
17	Short-range amorphous carbon nanosheets for oxygen reduction electrocatalysis. Nanoscale Advances, 2020, 2, 5769-5776.	2.2	4
18	Constructing an interface synergistic effect from a SnS/MoS ₂ heterojunction decorating N, S co-doped carbon nanosheets with enhanced sodium ion storage performance. Journal of Materials Chemistry A, 2020, 8, 22593-22600.	5.2	58

XIAO-HUI ZHANG

#	Article	IF	CITATIONS
19	Enhanced thermal conductivity interface by covalently bridging on cu-zn alloy with functionalized graphene through pulse electrodeposition. Thin Solid Films, 2020, 709, 138126.	0.8	4
20	<i>In situ</i> photo-derived MnOOH collaborating with Mn ₂ Co ₂ C@C dual co-catalysts boost photocatalytic overall water splitting. Journal of Materials Chemistry A, 2020, 8, 17120-17127.	5.2	24
21	FeSe ₂ @C Microrods as a Superior Long-Life and High-Rate Anode for Sodium Ion Batteries. ACS Nano, 2020, 14, 17683-17692.	7.3	140
22	Interface-tuned Mo-based nanospheres for efficient oxygen reduction and hydrogen evolution catalysis. Catalysis Science and Technology, 2020, 10, 6713-6722.	2.1	1
23	From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries. Electrochimica Acta, 2020, 356, 136856.	2.6	106
24	Three-Dimensional Hierarchical MoSe ₂ /N, F Co-Doped Carbon Heterostructure Assembled by Ultrathin Nanosheets for Advanced Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 14127-14136.	3.2	25
25	Nickel catalyzed graphitized carbon coated LiFe1-xNixPO4 composites as cathode material for high-performance lithium-ion batteries. Electrochimica Acta, 2020, 353, 136565.	2.6	13
26	Innovative Electrochemical Strategy to Recovery of Cathode and Efficient Lithium Leaching from Spent Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 4767-4776.	2.5	54
27	<i>>In Situ</i> > Photodeposited Construction of Pt–CdS/g-C ₃ N ₄ –MnO _{<i>x</i>} Composite Photocatalyst for Efficient Visible-Light-Driven Overall Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 20579-20588.	4.0	111
28	Insight of a Phase Compatible Surface Coating for Longâ€Durable Liâ€Rich Layered Oxide Cathode. Advanced Energy Materials, 2019, 9, 1901795.	10.2	129
29	Recent Progresses in Oxygen Reduction Reaction Electrocatalysts for Electrochemical Energy Applications. Electrochemical Energy Reviews, 2019, 2, 518-538.	13.1	176
30	Dual onfined SiO Embedded in TiO ₂ Shell and 3D Carbon Nanofiber Web as Stable Anode Material for Superior Lithium Storage. Advanced Materials Interfaces, 2019, 6, 1801800.	1.9	27
31	Improvement of the Cycling Stability of Li-Rich Layered Mn-Based Oxide Cathodes Modified by Nanoscale LaPO ₄ Coating. ACS Applied Energy Materials, 2019, 2, 3532-3541.	2.5	53
32	Zinc-assisted mechanochemical coating of a reduced graphene oxide thin layer on silicon microparticles to achieve efficient lithium-ion battery anodes. Sustainable Energy and Fuels, 2019, 3, 1258-1268.	2.5	5
33	Li-Rich Layered Oxides and Their Practical Challenges: Recent Progress and Perspectives. Electrochemical Energy Reviews, 2019, 2, 277-311.	13.1	158
34	Synthesis of FeS Nanoparticles Embedded in MoS ₂ /C Nanosheets as Highâ€Performance Anode Material for Lithiumâ€lon Batteries. Energy Technology, 2019, 7, 1801132.	1.8	5
35	Improving Electrochemical Performances of Li-Rich Layered Mn-Based Oxide Cathodes through K ₂ Cr ₂ O ₇ Solution Treatment. ACS Applied Energy Materials, 2019, 2, 1563-1571.	2.5	16
36	Simultaneous Encapsulation of Nano-Si in Redox Assembled rGO Film as Binder-Free Anode for Flexible/Bendable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 3897-3908.	4.0	53

XIAO-HUI ZHANG

#	Article	IF	CITATIONS
37	Scalable synthesis of SnCo/NC composite as a high performance anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 775, 975-981.	2.8	18
38	Electrospray synthesis of nano-Si encapsulated in graphite/carbon microplates as robust anodes for high performance lithium-ion batteries. Sustainable Energy and Fuels, 2018, 2, 679-687.	2.5	25
39	Effect of Surface Modification with Spinel NiFe ₂ O ₄ on Enhanced Cyclic Stability of LiMn ₂ O ₄ Cathode Material in Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 570-578.	3.2	35
40	Three-dimensional flower-like NiCo ₂ O ₄ /CNT for efficient catalysis of the oxygen evolution reaction. RSC Advances, 2018, 8, 28209-28215.	1.7	16
41	Core/shell Fe3O4@Fe encapsulated in N-doped three-dimensional carbon architecture as anode material for lithium-ion batteries. International Journal of Hydrogen Energy, 2018, 43, 15358-15364.	3.8	7
42	Electroless plating of a Sn–Ni/graphite sheet composite with improved cyclability as an anode material for lithium ion batteries. RSC Advances, 2018, 8, 15427-15435.	1.7	10
43	The Influences of Surface Coating Layers on the Properties of Layered/Spinel Heterostructured Li-Rich Cathode Material. ACS Sustainable Chemistry and Engineering, 2018, 6, 12969-12979.	3.2	39
44	Ultrasmall MoS ₂ embedded in carbon nanosheets-coated Sn/SnO _x as anode material for high-rate and long life Li-ion batteries. Journal of Materials Chemistry A, 2017, 5, 4576-4582.	5.2	89
45	In situ growth of NiO nanoparticles on carbon paper as a cathode for rechargeable Li–O ₂ batteries. RSC Advances, 2017, 7, 23328-23333.	1.7	66
46	Scalable synthesis of Sb/MoS2/C composite as high performance anode material for lithium ion batteries. Journal of Alloys and Compounds, 2017, 728, 1139-1145.	2.8	21
47	A New Strategy to Stabilize Capacity and Insight into the Interface Behavior in Electrochemical Reaction of LiNi _{0.5} Mn _{1.5} O ₄ /Graphite System for High-Voltage Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 33274-33287.	4.0	31
48	Hierarchically Structured Lithium-Rich Layered Oxide with Exposed Active {010} Planes as High-Rate-Capability Cathode for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2017, 5, 8970-8981.	3.2	44
49	Spinel/Layered Heterostructured Lithium-Rich Oxide Nanowires as Cathode Material for High-Energy Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 41210-41223.	4.0	69
50	Li _{1.2} Ni _{0.13} Co _{0.13} Mn _{0.54} O ₂ with Controllable Morphology and Size for High Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 25358-25368.	4.0	76
51	Convenient and large-scale synthesis of hollow graphene-like nanocages for electrochemical supercapacitor application. Chemical Engineering Journal, 2017, 313, 1242-1250.	6.6	82
52	Preparation of a Sn@SnO ₂ @C@MoS ₂ composite as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 7185-7189.	5.2	91
53	Large area synthesis of well-dispersed β-MnO 2 nanorods and their electrochemical supercapacitive performances. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65, 544-551.	2.7	18
54	Novel graphitic carbon nitride/graphite carbon/palladium nanocomposite as a high-performance electrocatalyst for the ethanol oxidation reaction. Electrochimica Acta, 2016, 191, 606-615.	2.6	46

XIAO-HUI ZHANG

#	Article	IF	CITATIONS
55	Three-dimensional Co3O4/CNTs/CFP composite as binder-free cathode for rechargeable Li-O2 batteries. Chemical Engineering Journal, 2016, 296, 28-34.	6.6	40
56	Preparation of Spherical Sn/SnO2/Porous Carbon Composite Materials as Anode Material for Lithium-Ion Batteries. Journal of Materials Engineering and Performance, 2015, 24, 1856-1864.	1.2	6
57	Direct growth of flower-like 3D MnO ₂ ultrathin nanosheets on carbon paper as efficient cathode catalyst for rechargeable Li–O ₂ batteries. RSC Advances, 2015, 5, 72495-72499.	1.7	44
58	Controlled synthesis of three-dimensional interconnected graphene-like nanosheets from graphite microspheres as high-performance anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 21298-21307.	5.2	23
59	Electrochemical performance of SnO 2 /modified graphite composite material as anode of lithium ion battery. Materials Chemistry and Physics, 2015, 167, 303-308.	2.0	8
60	Surfactants assisted synthesis of nano-LiFePO ₄ /C composite as cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 2025-2035.	5.2	41
61	Surfactant effect on synthesis of core-shell LiFePO4/C cathode materials for lithium-ion batteries. Journal of Solid State Electrochemistry, 2015, 19, 187-194.	1.2	9
62	MnO2 nanosilks self-assembled micropowders: Facile one-step hydrothermal synthesis and their application as supercapacitor electrodes. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 2995-2999.	2.7	12