Douglas G Tilley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7028156/publications.pdf

Version: 2024-02-01

83 papers 3,589 citations

34 h-index 58 g-index

84 all docs 84 docs citations

84 times ranked 4452 citing authors

#	Article	IF	CITATIONS
1	Pepducin ICL1-9-Mediated \hat{I}^2 2-Adrenergic Receptor-Dependent Cardiomyocyte Contractility Occurs in a Gi Protein/ROCK/PKD-Sensitive Manner. Cardiovascular Drugs and Therapy, 2023, 37, 245-256.	1.3	4
2	G protein-coupled receptor kinase 5 (GRK5) contributes to impaired cardiac function and immune cell recruitment in post-ischemic heart failure. Cardiovascular Research, 2022, 118, 169-183.	1.8	27
3	Epidermal growth factor receptor-dependent maintenance of cardiac contractility. Cardiovascular Research, 2022, 118, 1276-1288.	1.8	8
4	Epidermal growth factor receptor association with \hat{l}^21 -adrenergic receptor is mediated via its juxtamembrane domain. Cellular Signalling, 2021, 78, 109846.	1.7	2
5	Recent advances in GPCR-regulated leukocyte responses during acute cardiac injury. Current Opinion in Physiology, 2021, 19, 55-61.	0.9	2
6	Self-made allostery: endogenous COMP antagonizes pathologic AT1AR signaling. Cell Research, 2021, 31, 730-731.	5.7	2
7	Nicotinamide riboside kinase-2 alleviates ischemia-induced heart failure through P38 signaling. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165609.	1.8	18
8	ADP exerts P2Y12 -dependent and P2Y12 -independent effects on primary human T cell responses to stimulation. Journal of Cell Communication and Signaling, 2020, 14, 111-126.	1.8	9
9	Loss of Protease-Activated Receptor 4 Prevents Inflammation Resolution and Predisposes the Heart to Cardiac Rupture After Myocardial Infarction. Circulation, 2020, 142, 758-775.	1.6	14
10	Cardiac Expression of Factor X Mediates Cardiac Hypertrophy and Fibrosis in Pressure Overload. JACC Basic To Translational Science, 2020, 5, 69-83.	1.9	11
11	Leukocyte-Dependent Regulation of Cardiac Fibrosis. Frontiers in Physiology, 2020, 11, 301.	1.3	32
12	Loss of dynamic regulation of G protein-coupled receptor kinase 2 by nitric oxide leads to cardiovascular dysfunction with aging. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H1162-H1175.	1.5	7
13	\hat{l}^2 2-adrenergic receptor-mediated mitochondrial biogenesis improves skeletal muscle recovery following spinal cord injury. Experimental Neurology, 2019, 322, 113064.	2.0	24
14	Cardiomyocyte-GSK-3α promotes mPTP opening and heart failure in mice with chronic pressure overload. Journal of Molecular and Cellular Cardiology, 2019, 130, 65-75.	0.9	34
15	Muscarinic receptors promote pacemaker fate at the expense of secondary conduction system tissue in zebrafish. JCI Insight, 2019, 4, .	2.3	9
16	Prior beta blocker treatment decreases leukocyte responsiveness to injury. JCI Insight, 2019, 4, .	2.3	20
17	GRK5â€mediated Exacerbation of Ischemic Heart Failure Involves Cardiac Immune and Inflammatory Responses. FASEB Journal, 2019, 33, 676.7.	0.2	O
18	The Role of Leukocytes in Diabetic Cardiomyopathy. Frontiers in Physiology, 2018, 9, 1547.	1.3	50

#	Article	IF	CITATIONS
19	Pepducin-mediated cardioprotection via \hat{l}^2 -arrestin-biased \hat{l}^2 2-adrenergic receptor-specific signaling. Theranostics, 2018, 8, 4664-4678.	4.6	37
20	Designer Approaches for G Protein–Coupled Receptor Modulation for Cardiovascular Disease. JACC Basic To Translational Science, 2018, 3, 550-562.	1.9	23
21	G protein-coupled receptor kinase 2 contributes to impaired fatty acid metabolism in the failing heart. Journal of Molecular and Cellular Cardiology, 2018, 123, 108-117.	0.9	22
22	Association of Variants in <i>BAG3</i> With Cardiomyopathy Outcomes in African American Individuals. JAMA Cardiology, 2018, 3, 929.	3.0	57
23	Abstract 578: \hat{l}^2 -arrestin-Biased \hat{l}^2 2-Adrenergic Receptor Signaling Enhances Cardiomyocyte Contractility via ROCK-Dependent Signaling. Circulation Research, 2018, 123, .	2.0	0
24	Cardiac GPCR–Mediated EGFR Transactivation: Impact and Therapeutic Implications. Journal of Cardiovascular Pharmacology, 2017, 70, 3-9.	0.8	23
25	DUSPs as critical regulators of cardiac hypertrophy. Clinical Science, 2017, 131, 155-158.	1.8	4
26	Dual inhibition of cathepsin G and chymase reduces myocyte death and improves cardiac remodeling after myocardial ischemia reperfusion injury. Basic Research in Cardiology, 2017, 112, 62.	2.5	50
27	Impact of paroxetine on proximal \hat{I}^2 -adrenergic receptor signaling. Cellular Signalling, 2017, 38, 127-133.	1.7	18
28	Gαq Signaling in the Regulation of Autophagy and Heart Failure. Journal of Cardiovascular Pharmacology, 2017, 69, 212-214.	0.8	0
29	Interleukin-10 Inhibits Bone Marrow Fibroblast Progenitor Cell–Mediated Cardiac Fibrosis in Pressure-Overloaded Myocardium. Circulation, 2017, 136, 940-953.	1.6	57
30	Caspase-1 mediates hyperlipidemia-weakened progenitor cell vessel repair. Frontiers in Bioscience - Landmark, 2016, 21, 178-191.	3.0	54
31	\hat{I}^2 2-Adrenergic receptor-dependent chemokine receptor 2 expression regulates leukocyte recruitment to the heart following acute injury. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 15126-15131.	3.3	48
32	Adeno-Associated Virus Serotype 9â€"Driven Expression of BAG3 Improves LeftÂVentricular Function in Murine Hearts With Left Ventricular Dysfunction Secondary to a Myocardial Infarction. JACC Basic To Translational Science, 2016, 1, 647-656.	1.9	32
33	Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy. Journal of Biological Chemistry, 2016, 291, 21913-21924.	1.6	9
34	Leukocyte-Expressed \hat{l}^2 ₂ -Adrenergic Receptors Are Essential for Survival After Acute Myocardial Injury. Circulation, 2016, 134, 153-167.	1.6	53
35	Vasopressin type \hat{A} 1A receptor deletion enhances cardiac contractility, \hat{I}^2 -adrenergic receptor sensitivity and acute cardiac injury-induced dysfunction. Clinical Science, 2016, 130, 2017-2027.	1.8	6
36	î²-arrestin–biased signaling through the î² ₂ -adrenergic receptor promotes cardiomyocyte contraction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4107-16.	3.3	94

#	Article	IF	CITATIONS
37	BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2016, 92, 10-20.	0.9	56
38	Arginine vasopressin receptor signaling and functional outcomes in heart failure. Cellular Signalling, 2016, 28, 224-233.	1.7	37
39	Bcl-2–associated athanogene 3 protects the heart from ischemia/reperfusion injury. JCI Insight, 2016, 1, e90931.	2.3	40
40	Cardiac Dysfunction in HIVâ€1 Transgenic Mouse: Role of Stress and BAG3. Clinical and Translational Science, 2015, 8, 305-310.	1.5	20
41	Early Hyperlipidemia Promotes Endothelial Activation via a Caspase-1-Sirtuin 1 Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 804-816.	1.1	197
42	Role of Epidermal Growth Factor Receptor and Endoplasmic Reticulum Stress in Vascular Remodeling Induced by Angiotensin II. Hypertension, 2015, 65, 1349-1355.	1.3	82
43	BAG3: a new player in the heart failure paradigm. Heart Failure Reviews, 2015, 20, 423-434.	1.7	79
44	The Lysophosphatidylinositol Receptor GPR55 Modulates Pain Perception in the Periaqueductal Gray. Molecular Pharmacology, 2015, 88, 265-272.	1.0	48
45	Orphan Nuclear Receptor Nur77 Inhibits Cardiac Hypertrophic Response to Beta-Adrenergic Stimulation. Molecular and Cellular Biology, 2015, 35, 3312-3323.	1.1	36
46	Temporal and gefitinib-sensitive regulation of cardiac cytokine expression via chronic \hat{l}^2 -adrenergic receptor stimulation. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H316-H330.	1.5	23
47	Abstract 19409: \hat{i}^22 -Adrenergic Receptor Regulation of Innate Immune Responses Following Acute Myocardial Injury. Circulation, 2015, 132, .	1.6	0
48	\hat{l}^2 -Adrenergic Receptor-Dependent Alterations in Murine Cardiac Transcript Expression Are Differentially Regulated by Gefitinib In Vivo. PLoS ONE, 2014, 9, e99195.	1.1	17
49	Cardiac Progenitor Cells Engineered With \hat{l}^2 ARKct Have Enhanced \hat{l}^2 -Adrenergic Tolerance. Molecular Therapy, 2014, 22, 178-185.	3.7	12
50	Decreased Levels of BAG3 in a Family With a Rare Variant and in Idiopathic Dilated Cardiomyopathy. Journal of Cellular Physiology, 2014, 229, 1697-1702.	2.0	68
51	GRK5-Mediated Exacerbation of Pathological Cardiac Hypertrophy Involves Facilitation of Nuclear NFAT Activity. Circulation Research, 2014, 115, 976-985.	2.0	73
52	Dynamic mass redistribution analysis of endogenous $\hat{l}^2 \hat{a} \in \mathbb{R}$ drenergic receptor signaling in neonatal rat cardiac fibroblasts. Pharmacology Research and Perspectives, 2014, 2, e00024.	1.1	17
53	Increased Vasopressin 1A Receptor Expression in Failing Human Hearts. Journal of the American College of Cardiology, 2014, 63, 375-376.	1.2	21
54	Urotensin <scp>II</scp> promotes vagalâ€mediated bradycardia by activating cardiacâ€projecting parasympathetic neurons of nucleus ambiguus. Journal of Neurochemistry, 2014, 129, 628-636.	2.1	12

#	Article	IF	Citations
55	Direct evidence of intracrine angiotensin II signaling in neurons. American Journal of Physiology - Cell Physiology, 2014, 306, C736-C744.	2.1	19
56	β-Adrenergic Receptor–Mediated Cardiac Contractility Is Inhibited via Vasopressin Type 1A-Receptor–Dependent Signaling. Circulation, 2014, 130, 1800-1811.	1.6	34
57	\hat{l}^2 -Adrenergic receptor-mediated transactivation of epidermal growth factor receptor decreases cardiomyocyte apoptosis through differential subcellular activation of ERK1/2 and Akt. Journal of Molecular and Cellular Cardiology, 2014, 72, 39-51.	0.9	38
58	Abstract 16796: \hat{I}^2 2-Adrenergic Receptor Expression on Hematopoietic Cells is Critical for Survival Following Myocardial Infarction. Circulation, 2014, 130, .	1.6	0
59	Arginine Vasopressin Enhances Cell Survival via a G Proteinâ \in Coupled Receptor Kinase $2/\langle i \rangle$ 2 Arrestin $1/E$ xtracellular-Regulated Kinase $1/2$ â \in Dependent Pathway in H9c2 Cells. Molecular Pharmacology, 2013, 84, 227-235.	1.0	30
60	Unexpected Cardiac Hypertrophy by Epidermal Growth Factor Receptor Silencing. Hypertension, 2013, 61, e46.	1.3	3
61	Differential Activation of Cultured Neonatal Cardiomyocytes by Plasmalemmal Versus Intracellular G Protein-coupled Receptor 55. Journal of Biological Chemistry, 2013, 288, 22481-22492.	1.6	36
62	Nesfatinâ \in 1 activates cardiac vagal neurons of nucleus ambiguus and elicits bradycardia in conscious rats. Journal of Neurochemistry, 2013, 126, 739-748.	2.1	33
63	\hat{l}^2 -Adrenergic Regulation of Cardiac Progenitor Cell Death Versus Survival and Proliferation. Circulation Research, 2013, 112, 476-486.	2.0	59
64	Nuclear Translocation of Cardiac G Protein-Coupled Receptor Kinase 5 Downstream of Select Gq-Activating Hypertrophic Ligands Is a Calmodulin-Dependent Process. PLoS ONE, 2013, 8, e57324.	1.1	60
65	Acute cardiac gene expression changes mediated through betaâ€ARâ€mediated transactivation of EGFR in vivo. FASEB Journal, 2013, 27, 652.18.	0.2	0
66	Subtype specific $\hat{l}^2 \hat{a} \in \text{adrenerigic}$ receptor $\hat{a} \in \text{mediated}$ transactivation of epidermal growth factor receptor decreases apoptosis through differential activation of ERK1/2 and Akt. FASEB Journal, 2013, 27, 652.10.	0.2	0
67	G Protein–Dependent and G Protein–Independent Signaling Pathways and Their Impact on Cardiac Function. Circulation Research, 2011, 109, 217-230.	2.0	126
68	Functional Relevance of Biased Signaling at the Angiotensin II Type 1 Receptor. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2011, 11, 99-111.	0.6	16
69	Troglitazone stimulates \hat{I}^2 -arrestin-dependent cardiomyocyte contractility via the angiotensin II type 1A receptor. Biochemical and Biophysical Research Communications, 2010, 396, 921-926.	1.0	18
70	AT1 A Râ€Î²â€arrestin signaling confers PPARγ agonistâ€mediated myocyte contractility. FASEB Journal, 2010, 2 586.3.	4,0.2	0
71	\hat{l}^2 -Arrestin Mediates \hat{l}^21 -Adrenergic Receptor-Epidermal Growth Factor Receptor Interaction and Downstream Signaling. Journal of Biological Chemistry, 2009, 284, 20375-20386.	1.6	92
72	Physiologic and cardiac roles of \hat{l}^2 -arrestins. Journal of Molecular and Cellular Cardiology, 2009, 46, 300-308.	0.9	50

#	Article	IF	CITATIONS
73	\hat{l}^2 -Blockers alprenolol and carvedilol stimulate \hat{l}^2 -arrestin-mediated EGFR transactivation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14555-14560.	3.3	241
74	Beta-Arrestin-Mediated Signaling in the Heart. Circulation Journal, 2008, 72, 1725-1729.	0.7	46
75	î²-Arrestin–mediated β1-adrenergic receptor transactivation of the EGFR confers cardioprotection. Journal of Clinical Investigation, 2007, 117, 2445-2458.	3.9	405
76	Role of \hat{I}^2 -adrenergic receptor signaling and desensitization in heart failure: new concepts and prospects for treatment. Expert Review of Cardiovascular Therapy, 2006, 4, 417-432.	0.6	70
77	Regulation of PDE Expression in Arteries. , 2006, , .		O
78	Vascular Smooth Muscle Cell Phenotype-Dependent Phosphodiesterase 4D Short Form Expression: Role of Differential Histone Acetylation on cAMP-Regulated Function. Molecular Pharmacology, 2005, 68, 596-605.	1.0	39
79	Cyclic Nucleotide Phosphodiesterase Activity, Expression, and Targeting in Cells of the Cardiovascular System. Molecular Pharmacology, 2003, 64, 533-546.	1.0	289
80	Vascular Smooth Muscle Cell Phosphodiesterase (PDE) 3 and PDE4 Activities and Levels are Regulated by Cyclic AMP in Vivo. Molecular Pharmacology, 2002, 62, 497-506.	1.0	51
81	Altered Phosphodiesterase 3-Mediated cAMP Hydrolysis Contributes to a Hypermotile Phenotype in Obese JCR:LA-cp Rat Aortic Vascular Smooth Muscle Cells: Implications for Diabetes-Associated Cardiovascular Disease. Diabetes, 2002, 51, 1194-1200.	0.3	29
82	Reduced Phosphodiesterase 3 Activity and Phosphodiesterase 3A Level in Synthetic Vascular Smooth Muscle Cells: Implications for Use of Phosphodiesterase 3 Inhibitors in Cardiovascular Tissues. Molecular Pharmacology, 2002, 61, 1033-1040.	1.0	34
83	Expression of Phosphodiesterase 4D (PDE4D) Is Regulated by Both the Cyclic AMP-dependent Protein Kinase and Mitogen-activated Protein Kinase Signaling Pathways. Journal of Biological Chemistry, 2000, 275, 26615-26624.	1.6	72