
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7028077/publications.pdf Version: 2024-02-01

XINCYLIAN LILL

#	Article	IF	CITATIONS
1	A Biocompatible Fluorescent Ink Based on Waterâ€Soluble Luminescent Carbon Nanodots. Angewandte Chemie - International Edition, 2012, 51, 12215-12218.	7.2	1,050
2	Three Colors Emission from S,N Coâ€doped Graphene Quantum Dots for Visible Light H ₂ Production and Bioimaging. Advanced Optical Materials, 2015, 3, 360-367.	3.6	276
3	Ratiometric fluorescent nanosensor based on water soluble carbon nanodots with multiple sensing capacities. Nanoscale, 2013, 5, 5514.	2.8	219
4	One-step microwave synthesis of N-doped hydroxyl-functionalized carbon dots with ultra-high fluorescence quantum yields. Nanoscale, 2016, 8, 15281-15287.	2.8	209
5	Amplified Spontaneous Green Emission and Lasing Emission From Carbon Nanoparticles. Advanced Functional Materials, 2014, 24, 2689-2695.	7.8	206
6	Blue Quantum Dot Light-Emitting Diodes with High Electroluminescent Efficiency. ACS Applied Materials & Interfaces, 2017, 9, 38755-38760.	4.0	204
7	Solid-State Fluorescent Carbon Dots with Aggregation-Induced Yellow Emission for White Light-Emitting Diodes with High Luminous Efficiencies. ACS Applied Materials & Interfaces, 2019, 11, 24395-24403.	4.0	162
8	Efficient Inorganic Perovskite Light-Emitting Diodes with Polyethylene Glycol Passivated Ultrathin CsPbBr ₃ Films. Journal of Physical Chemistry Letters, 2017, 8, 4148-4154.	2.1	145
9	Solutionâ€Phase Synthesis and Characterization of Singleâ€Crystalline SnSe Nanowires. Angewandte Chemie - International Edition, 2011, 50, 12050-12053.	7.2	136
10	Toward Highly Luminescent and Stabilized Silica-Coated Perovskite Quantum Dots through Simply Mixing and Stirring under Room Temperature in Air. ACS Applied Materials & Interfaces, 2018, 10, 13053-13061.	4.0	115
11	Enhanced photocatalytic N2 fixation by promoting N2 adsorption with a co-catalyst. Science Bulletin, 2019, 64, 918-925.	4.3	109
12	Fabrication Strategy for Efficient 2D/3D Perovskite Solar Cells Enabled by Diffusion Passivation and Strain Compensation. Advanced Energy Materials, 2020, 10, 2002004.	10.2	97
13	Interference Effect of Alcohol on Nessler's Reagent in Photocatalytic Nitrogen Fixation. ACS Sustainable Chemistry and Engineering, 2018, 6, 5342-5348.	3.2	96
14	High-Performance NiO/Ag/NiO Transparent Electrodes for Flexible Organic Photovoltaic Cells. ACS Applied Materials & Interfaces, 2014, 6, 16403-16408.	4.0	91
15	Tailoring C ₆₀ for Efficient Inorganic CsPbI ₂ Br Perovskite Solar Cells and Modules. Advanced Materials, 2020, 32, e1907361.	11.1	88
16	Highly Conductive Transparent Organic Electrodes with Multilayer Structures for Rigid and Flexible Optoelectronics. Scientific Reports, 2015, 5, 10569.	1.6	77
17	Excitation Wavelength Independence: Toward Low-Threshold Amplified Spontaneous Emission from Carbon Nanodots. ACS Applied Materials & Interfaces, 2016, 8, 25454-25460.	4.0	75
18	Brightly fluorescent red organic solids bearing boron-bridged π–conjugated skeletons. Journal of Materials Chemistry, 2011, 21, 15298.	6.7	73

#	Article	IF	CITATIONS
19	High-performance ITO-free electrochromic films based on bi-functional stacked WO3/Ag/WO3 structures. Solar Energy Materials and Solar Cells, 2015, 136, 86-91.	3.0	67
20	Dual-Functional WO ₃ Nanocolumns with Broadband Antireflective and High-Performance Flexible Electrochromic Properties. ACS Applied Materials & Interfaces, 2016, 8, 27107-27114.	4.0	61
21	Structure defects assisted photocatalytic H2 production for polythiophene nanofibers. Applied Catalysis B: Environmental, 2017, 211, 98-105.	10.8	61
22	Carbon Dots Exhibiting Concentration-Dependent Full-Visible-Spectrum Emission for Light-Emitting Diode Applications. ACS Applied Materials & Interfaces, 2019, 11, 46054-46061.	4.0	61
23	Fully Integrated Organic Nanocrystal Diode as High Performance Room Temperature NO ₂ Sensor. Advanced Materials, 2016, 28, 2971-2977.	11.1	57
24	High Brightness and Enhanced Stability of CsPbBr ₃ â€Based Perovskite Lightâ€Emitting Diodes by Morphology and Interface Engineering. Advanced Optical Materials, 2018, 6, 1801245.	3.6	57
25	Spectrally-narrow blue light-emitting organic electroluminescent devices utilizing thulium complexes. Synthetic Metals, 1999, 104, 165-168.	2.1	56
26	Bifunctional MoO ₃ –WO ₃ /Ag/MoO ₃ –WO ₃ Films for Efficient ITO–Free Electrochromic Devices. ACS Applied Materials & Interfaces, 2016, 8, 33842-33847.	4.0	56
27	White light emitting organic electroluminescent devices using lanthanide dinuclear complexes. Journal of Luminescence, 1999, 82, 105-109.	1.5	55
28	Phase shift and penetration depth of metal mirrors in a microcavity structure. Applied Optics, 2007, 46, 6247.	2.1	50
29	Harvesting Triplet Excitons with Exciplex Thermally Activated Delayed Fluorescence Emitters toward High Performance Heterostructured Organic Light-Emitting Field Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 2711-2719.	4.0	48
30	Inverted CdSe/CdS/ZnS quantum dot light emitting devices with titanium dioxide as an electron-injection contact. Nanoscale, 2013, 5, 3474.	2.8	47
31	Enhanced electroluminescence of europium(III) complex by terbium(III) substitution in organic light emitting diodes. Thin Solid Films, 2000, 363, 208-210.	0.8	45
32	Microcavity organic laser device under electrical pumping. Optics Letters, 2009, 34, 503.	1.7	45
33	WO ₃ â€Based Electrochromic Distributed Bragg Reflector: Toward Electrically Tunable Microcavity Luminescent Device. Advanced Optical Materials, 2018, 6, 1700791.	3.6	45
34	Highly Luminescent Carbonâ€Nanoparticleâ€Based Materials: Factors Influencing Photoluminescence Quantum Yield. Particle and Particle Systems Characterization, 2014, 31, 1175-1182.	1.2	44
35	Trifunctional NiO–Ag–NiO electrodes for ITO-free electrochromic supercapacitors. Journal of Materials Chemistry C, 2017, 5, 8408-8414.	2.7	43
36	Evolution from Lyotropic Liquid Crystal to Helical Fibrous Organogel of an Achiral Fluorescent Twinâ€Tapered Biâ€1,3,4â€oxadiazole Derivative. Chemistry - A European Journal, 2011, 17, 3512-3518.	1.7	39

#	Article	IF	CITATIONS
37	Transparent organic thin film transistors with WO3/Ag/WO3 source-drain electrodes fabricated by thermal evaporation. Applied Physics Letters, 2013, 103, 033301.	1.5	35
38	Sb2O3/Ag/Sb2O3 Multilayer Transparent Conducting Films For Ultraviolet Organic Light-emitting Diode. Scientific Reports, 2017, 7, 41250.	1.6	35
39	High-efficiency inverted quantum dot light-emitting diodes with enhanced hole injection. Nanoscale, 2017, 9, 6748-6754.	2.8	35
40	White light emission from OEL devices based on organic dysprosium-complex. Synthetic Metals, 2000, 111-112, 43-45.	2.1	34
41	Investigating underlying mechanism in spectral narrowing phenomenon induced by microcavity in organic light emitting diodes. Nature Communications, 2019, 10, 1614.	5.8	33
42	Efficient and Stable Red Emissive Carbon Nanoparticles with a Hollow Sphere Structure for White Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 31863-31870.	4.0	32
43	Ultrathin and efficient flexible polymer photovoltaic cells based on stable indium-free multilayer transparent electrodes. Journal of Materials Chemistry, 2012, 22, 17176.	6.7	30
44	Two dimensional directed π–π interactions in a linear shaped bi-1,3,4-oxadiazole derivative to achieve organic single crystal with highly polarized fluorescence and amplified spontaneous emissions. Journal of Materials Chemistry, 2012, 22, 24605.	6.7	30
45	Improved Performance of Organic Light-Emitting Field-Effect Transistors by Interfacial Modification of Hole-Transport Layer/Emission Layer: Incorporating Organic Heterojunctions. ACS Applied Materials & amp; Interfaces, 2016, 8, 14063-14070.	4.0	30
46	Mg-Doped ZnO Nanoparticle Films as the Interlayer between the ZnO Electron Transport Layer and InP Quantum Dot Layer for Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 8758-8765.	1.5	30
47	Novel 1,8-naphthalimide derivatives for standard-red organic light-emitting device applications. Journal of Materials Chemistry C, 2015, 3, 5259-5267.	2.7	29
48	A self-quenching-resistant carbon nanodot powder with multicolored solid-state fluorescence for ultra-fast staining of various representative bacterial species within one minute. Nanoscale, 2016, 8, 19744-19753.	2.8	29
49	Highly stable and flexible ITO-free electrochromic films with bi-functional stacked MoO 3 /Ag/MoO 3 structures. Electrochimica Acta, 2016, 189, 184-189.	2.6	29
50	Improved performance of CsPbBr ₃ perovskite light-emitting devices by both boundary and interface defects passivation. Nanoscale, 2018, 10, 18315-18322.	2.8	29
51	Highly Efficient Microcavity Organic Light-Emitting Devices with Narrow-Band Pure UV Emission. ACS Applied Materials & Interfaces, 2020, 12, 10717-10726.	4.0	28
52	Silver nanowire/polyimide composite transparent electrodes for reliable flexible polymer solar cells operating at high and ultra-low temperature. RSC Advances, 2015, 5, 24953-24959.	1.7	27
53	Novel host materials based on phenanthroimidazole derivatives for highly efficient green phosphorescent OLEDs. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 268, 37-43.	2.0	26
54	Near-Infrared to Visible Organic Upconversion Devices Based on Organic Light-Emitting Field Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 36103-36110.	4.0	26

#	Article	IF	CITATIONS
55	Optical and electrical properties of Vanadium doped Indium oxide thin films. Optics Express, 2008, 16, 194.	1.7	25
56	Pyrene-based BODIPY: synthesis, photophysics and lasing properties under UV-pumping radiation. RSC Advances, 2014, 4, 38119.	1.7	24
57	Crystal structure and luminescence properties of (Ca _{2.94â^x} Lu _x Ce _{0.06})(Sc _{2â^y} Mg _y)Si <sub phosphors for white LEDs with excellent colour rendering and high luminous efficiency. Journal Physics D: Applied Physics. 2011. 44. 075402.</sub 	>3O<	sub>12
58	Enhanced Performance and Flexibility of Perovskite Solar Cells Based on Microstructured Multilayer Transparent Electrodes. ACS Applied Materials & amp; Interfaces, 2018, 10, 18141-18148.	4.0	23
59	Improved Performance for Thermally Evaporated Perovskite Light-Emitting Devices via Defect Passivation and Carrier Regulation. ACS Applied Materials & Interfaces, 2020, 12, 15928-15933.	4.0	23
60	Triphenylamine-cored tetramethyl-BODIPY dyes: synthesis, photophysics and lasing properties in organic media. RSC Advances, 2013, 3, 14993.	1.7	22
61	Light gain amplification in microcavity organic semiconductor laser diodes under electrical pumping. Science Bulletin, 2017, 62, 1637-1638.	4.3	22
62	Observation of a red Ce3+ center in SrLu2O4:Ce3+ phosphor and its potential application in temperature sensing. Dalton Transactions, 2019, 48, 5263-5270.	1.6	22
63	Low-Work-Function, ITO-Free Transparent Cathodes for Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 19960-19965.	4.0	21
64	Efficient perovskite light-emitting diodes by film annealing temperature control. RSC Advances, 2016, 6, 71070-71075.	1.7	21
65	Simultaneous harvesting of triplet excitons in OLEDs by both guest and host materials with an intramolecular charge-transfer feature via triplet–triplet annihilation. Journal of Materials Chemistry C, 2015, 3, 6970-6978.	2.7	20
66	High-Work-Function Transparent Conductive Oxides with Multilayer Films. Applied Physics Express, 2012, 5, 041102.	1.1	19
67	Toward highly fluorescence and ultralow-threshold amplified spontaneous emission in ordered solid state from twin-tapered bi-1,3,4-oxadiazole derivatives. Journal of Materials Chemistry, 2012, 22, 3875.	6.7	18
68	High performance, top-emitting, quantum dot light-emitting diodes with all solution-processed functional layers. Journal of Materials Chemistry C, 2017, 5, 9138-9145.	2.7	18
69	Red, Green, and Blue Microcavity Quantum Dot Light-Emitting Devices with Narrow Line Widths. ACS Applied Nano Materials, 2020, 3, 5301-5310.	2.4	18
70	Surface organic ligand-passivated quantum dots: toward high-performance light-emitting diodes with long lifetimes. Journal of Materials Chemistry C, 2021, 9, 2483-2490.	2.7	18
71	Ca3Al2(SiO4)3â~δCl4δ:Eu2+, Mn2+: A potential phosphor with energy transfer for near-UV pumped white-LEDs. Optical Materials, 2011, 33, 1262-1265.	1.7	16
72	Ultrathin Metal Fluoride Interfacial Layers for Use in Organic Photovoltaic Cells. Advanced Functional Materials, 2015, 25, 6906-6912.	7.8	16

XINGYUAN LIU

#	Article	IF	CITATIONS
73	Vertical Microcavity Organic Light-emitting Field-effect Transistors. Scientific Reports, 2016, 6, 23210.	1.6	15
74	Ultraviolet Luminescent, Highâ€Effectiveâ€Workâ€Function LaTiO ₃ â€Doped Indium Oxide and Its Effects in Organic Optoelectronics. Advanced Materials, 2010, 22, 2211-2215.	11.1	14
75	Pixeled Electroluminescence from Multilayer Heterostructure Organic Light-Emitting Transistors. Journal of Physical Chemistry C, 2015, 119, 20237-20243.	1.5	14
76	Eu and F co-doped ZnO-based transparent electrodes for organic and quantum dot light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 5542-5551.	2.7	14
77	Boosting the Efficiency and Stability of Perovskite Light-Emitting Devices by a 3-Amino-1-propanol-Tailored PEDOT:PSS Hole Transport Layer. ACS Applied Materials & Interfaces, 2020, 12, 43331-43338.	4.0	14
78	Waveguide and ultralow-threshold amplified spontaneous emission in an aligned ordered solid state based on a highly fluorescent twin-tapered bi-1,3,4-oxadiazole derivative. Chemical Communications, 2011, 47, 4207.	2.2	13
79	Eu[sup 2+]-Activated Ca[sub 8]Zn(SiO[sub 4])[sub 4]Cl[sub 2]: An Intense Green Emitting Phosphor for Blue Light Emitting Diodes. Journal of the Electrochemical Society, 2011, 158, H124.	1.3	13
80	Pr and F co-doped SnO_2 transparent conductive films with high work function deposited by ion-assisted electron beam evaporation. Optics Express, 2014, 22, 4731.	1.7	13
81	High performance planar microcavity organic semiconductor lasers based on thermally evaporated top distributed Bragg reflector. Applied Physics Letters, 2020, 117, 153301.	1.5	13
82	Microcavityâ€Enhanced Blue Organic Lightâ€Emitting Diode for Highâ€Quality Monochromatic Light Source with Nonquarterwave Structural Design. Advanced Optical Materials, 2020, 8, 1901421.	3.6	13
83	Efficient Perovskite Solar Cells Based on Multilayer Transparent Electrodes through Morphology Control. Journal of Physical Chemistry C, 2016, 120, 26703-26709.	1.5	12
84	Manganese-doped indium oxide and its application in organic light-emitting diodes. Applied Physics Letters, 2011, 99, 023302.	1.5	11
85	Model and simulation on the efficiencies of microcavity OLEDs. Optics Communications, 2012, 285, 3100-3103.	1.0	11
86	Improving the Efficiency of Multilayer Organic Lightâ€Emitting Transistors by Exploring the Hole Blocking Effect. Advanced Materials Interfaces, 2020, 7, 2000657.	1.9	11
87	Efficient Inorganic Perovskite Light-Emitting Diodes by Inducing Grain Arrangement via a Multifunctional Interface. ACS Applied Materials & Interfaces, 2021, 13, 60571-60580.	4.0	11
88	Ampholytic interface induced <i>in situ</i> growth of CsPbBr ₃ for highly efficient perovskite light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 1025-1033.	2.7	10
89	Synergistic morphology control and non-radiative defect passivation using a crown ether for efficient perovskite light-emitting devices. Journal of Materials Chemistry C, 2020, 8, 9986-9992.	2.7	9
90	Highly efficient organic light-emitting devices beyond theoretical prediction under high current density. Optics Express, 2009, 17, 21370.	1.7	8

#	Article	IF	CITATIONS
91	Ultrahigh near infrared photoresponsive organic field-effect transistors with lead phthalocyanine/C ₆₀ heterojunction on poly(vinyl alcohol) gate dielectric. Nanotechnology, 2015, 26, 185501.	1.3	8
92	In-plane electroluminescence from microcavity organic light-emitting transistors. Organic Electronics, 2015, 26, 92-98.	1.4	8
93	Improvements of Bilayer Ambipolar Organic Field-Effect Transistors Based on Pentacene and <i>N</i> , <i>N</i> \$ '\$-Ditridecylperylene-3,4,9,10-tetracarboxylic Di-imide by Changing Growth Rate Method. Applied Physics Express, 2012, 5, 095601.	1.1	7
94	N-channel transparent organic thin-film transistors with Ag/LiF bilayer transparent source–drain electrodes fabricated by thermal evaporation. Applied Physics Express, 2014, 7, 021601.	1.1	7
95	Correlating optimal electrode buffer layer thickness with the surface roughness of the active layer in organic phototransistors. Synthetic Metals, 2014, 193, 35-40.	2.1	7
96	Controlling the Chain Orientation and Crystal Form of Poly(9,9-dioctylfluorene) Films for Low-Threshold Light-Pumped Lasers. Macromolecules, 2021, 54, 4342-4350.	2.2	7
97	Lasing behavior in DCM-doped PVK microcavity. Synthetic Metals, 2000, 111-112, 563-565.	2.1	6
98	Y-branched TiO2 Nanotube Arrays Made by a Simplified Two-step Electrochemical Anodic Oxidation Method. Chemistry Letters, 2012, 41, 389-391.	0.7	6
99	Low-Voltage, High-Mobility Air-Stable Ambipolar Organic Field-Effect Transistors with a Voltage-Dependent Off-Current State and Modest Operational Stability. Applied Physics Express, 2013, 6, 051602.	1.1	6
100	Transparent ambipolar organic thin film transistors based on multilayer transparent source-drain electrodes. Applied Physics Letters, 2016, 109, .	1.5	6
101	Toward Ultrahigh Red Light Responsive Organic FETs Utilizing Neodymium Phthalocyanine as Light Sensitive Material. IEEE Transactions on Electron Devices, 2016, 63, 452-458.	1.6	6
102	Transparent perovskite light-emitting diodes by employing organic-inorganic multilayer transparent top electrodes. Applied Physics Letters, 2017, 111, 213301.	1.5	6
103	Pure bromide-based inorganic perovskite sky-blue light-emitting diodes through phase control by the NiO _{<i>x</i>} anode interface. Journal of Materials Chemistry C, 2022, 10, 9538-9545.	2.7	6
104	Y-branched TiO2 nanotube arrays synthesized by anodic oxidation. Science China: Physics, Mechanics and Astronomy, 2012, 55, 14-18.	2.0	5
105	Photoluminescence: Three Colors Emission from S,N Co-doped Graphene Quantum Dots for Visible Light H2Production and Bioimaging (Advanced Optical Materials 3/2015). Advanced Optical Materials, 2015, 3, 359-359.	3.6	4
106	Inverted structural quantum dot light-emitting diodes based on Al-doped ZnO electrode. Nanotechnology, 2017, 28, 365201.	1.3	4
107	White microcavity organic light-emitting diode based on one emitting material. Journal of Luminescence, 2007, 122-123, 590-592.	1.5	3
108	Enhanced Performance of Organic Light Emitting Device by Dual Doping of LiF in ETL and HTL. Journal of the Electrochemical Society, 2010, 157, H759.	1.3	3

#	Article	IF	CITATIONS
109	Spontaneous formation of a large area, aligned, ordered, ï€-conjugated film with polarized fluorescence and an amplified spontaneous emission based on a liquid crystalline bi-1,3,4-oxadiazole derivative. RSC Advances, 2013, 3, 19104.	1.7	3
110	Enhanced efficiency of organic light-emitting devices by employing a periodically corrugated conductive photoresist. Applied Physics Express, 2015, 8, 022102.	1.1	3
111	Microcavity OLEDs: Microcavityâ€Enhanced Blue Organic Lightâ€Emitting Diode for Highâ€Quality Monochromatic Light Source with Nonquarterwave Structural Design (Advanced Optical Materials) Tj ETQq1 1 0.7	7 8 4314 rg	gBZ /Overloc
112	Photoluminescent properties of dye-doped poly(N-vinyleabzole) (PVK) in microcavity. Thin Solid Films, 2000, 363, 198-200.	0.8	1
113	Stimulated emission in the film of polymer/dye blend. Thin Solid Films, 2000, 363, 201-203.	0.8	1
114	Full metal organic microcavity emitting device. , 2004, , .		1
115	Efficient inverted polymer solar cells employing an aqueous processing RbF cathode interfacial layer. RSC Advances, 2016, 6, 47454-47458.	1.7	1
116	Study on the Photoresponse Characteristics of Organic Light-Emitting Field-Effect Transistors. Journal of Physical Chemistry C, 2018, 122, 15190-15197.	1.5	1
117	Correction to "Mg Doped-ZnO Nanoparticle Film as the Interlayer between ZnO Electron Transport Layer and InP Quantum-Dot Layer for Light-Emitting Diodes― Journal of Physical Chemistry C, 2020, 124, 11274-11274.	1.5	1
118	Oxidation kinetics of nanocrystalline Al thin films. Anti-Corrosion Methods and Materials, 2019, 66, 638-643.	0.6	1
119	White light organic electroluminescent device using a naphthalimide derivative as the emitter layer. , 2000, , .		0
120	White light emission from organic microcavity electroluminescent device. , 2000, , .		0
121	Narrowing and enhancing effect of PL in PPV-film microcavity vessel. , 2000, 4086, 745.		0
122	<title>Transmissive properties of
Zr0<formula><inf><roman>2</roman></inf></formula>/Si0<formula><inf><roman>2</roman></inf></formula>
photonic band gap materials</title> . , 2001, 4600, 208.		0
123	Advantage of metal microcavities in realizing full-color PL emission with single mode from a broad spectrum material. , 2001, , .		0
124	Organic optical microgravity with distributed Bragg reflectors. , 2001, , .		0
125	Using a mixed emitting layer of hole and electron transporting molecules to improve the performance of MOLED. , 2004, 5280, 491.		0
126	<title>Experimental researches on the one-dimensional photonic crystal microcavity</title> ., 2006, 6029, 259.		0

#	Article	IF	CITATIONS
127	Electrically-pumped organic laser device with a coupled microcavity structure. , 2012, , .		0