
James J Douglas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7028018/publications.pdf Version: 2024-02-01

IAMES | DOUCLAS

#	Article	IF	CITATIONS
1	Photocatalysis in the Life Science Industry. Chemical Reviews, 2022, 122, 2907-2980.	23.0	183
2	Exploration of a Nitromethane-Carbonylation Strategy during Route Design of an Atropisomeric KRAS ^{G12C} Inhibitor. Journal of Organic Chemistry, 2022, 87, 2075-2086.	1.7	7
3	A Desaturative Approach for Aromatic Aldehyde Synthesis via Synergistic Enamine, Photoredox and Cobalt Triple Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
4	Some Items of Interest to Process R&D Chemists and Engineers. Organic Process Research and Development, 2022, 26, 1019-1028.	1.3	0
5	Some Items of Interest to Process R&D Chemists and Engineers. Organic Process Research and Development, 2022, 26, 1547-1557.	1.3	0
6	Development and Proof of Concept for a Large-Scale Photoredox Additive-Free Minisci Reaction. Organic Process Research and Development, 2021, 25, 57-67.	1.3	36
7	Some Items of Interest to Process R&D Chemists and Engineers. Organic Process Research and Development, 2021, 25, 691-702.	1.3	2
8	Copper-catalysed amination of alkyl iodides enabled by halogen-atom transfer. Nature Catalysis, 2021, 4, 623-630.	16.1	79
9	Some Items of Interest to Process R&D Chemists and Engineers. Organic Process Research and Development, 2021, 25, 2646-2657.	1.3	0
10	Some Items of Interest to Process R&D Chemists and Engineers. Organic Process Research and Development, 2020, 24, 1351-1363.	1.3	0
11	A photochemical dehydrogenative strategy for aniline synthesis. Nature, 2020, 584, 75-81.	13.7	124
12	Some Items of Interest to Process R&D Chemists and Engineers. Organic Process Research and Development, 2020, 24, 2789-2801.	1.3	1
13	Some Items of Interest to Process R&D Chemists and Engineers. Organic Process Research and Development, 2020, 24, 885-896.	1.3	0
14	Some Items of Interest to Process R&D Chemists and Engineers. Organic Process Research and Development, 2020, 24, 115-124.	1.3	0
15	A display of sensitivity. Nature Chemistry, 2019, 11, 683-684.	6.6	13
16	Photoinduced decarboxylative azidation of cyclic amino acids. Organic and Biomolecular Chemistry, 2019, 17, 1839-1842.	1.5	33
17	A dual photoredox-nickel strategy for remote functionalization <i>via</i> iminyl radicals: radical ring-opening-arylation, -vinylation and -alkylation cascades. Chemical Science, 2019, 10, 7728-7733.	3.7	70
18	Some Items of Interest to Process R&D Chemists and Engineers. Organic Process Research and Development, 2019, 23, 1107-1117.	1.3	0

JAMES J DOUGLAS

#	Article	IF	CITATIONS
19	Practical and regioselective amination of arenes using alkyl amines. Nature Chemistry, 2019, 11, 426-433.	6.6	181
20	Some Items of Interest to Process R&D Chemists and Engineers. Organic Process Research and Development, 2019, 23, 2583-2591.	1.3	0
21	Photoinduced Remote Functionalisations by Iminyl Radical Promoted Câ^'C and Câ^'H Bond Cleavage Cascades. Angewandte Chemie - International Edition, 2018, 57, 744-748.	7.2	319
22	Photoinduced Remote Functionalisations by Iminyl Radical Promoted Câ^'C and Câ^'H Bond Cleavage Cascades. Angewandte Chemie, 2018, 130, 752-756.	1.6	87
23	Hydroxylamine Derivatives as Nitrogenâ€Radical Precursors in Visible‣ight Photochemistry. Chemistry - A European Journal, 2018, 24, 12154-12163.	1.7	219
24	Photoinduced Remote Functionalization of Amides and Amines Using Electrophilic Nitrogen Radicals. Angewandte Chemie - International Edition, 2018, 57, 12945-12949.	7.2	207
25	Photoinduced Remote Functionalization of Amides and Amines Using Electrophilic Nitrogen Radicals. Angewandte Chemie, 2018, 130, 13127-13131.	1.6	60
26	Visibleâ€Lightâ€Mediated 5â€ <i>exo</i> â€ <i>dig</i> Cyclizations of Amidyl Radicals. European Journal of Organic Chemistry, 2017, 2017, 2108-2111.	1.2	49
27	Enantioselective NHC-catalysed redox [4+2]-hetero-Diels-Alder reactions using α-aroyloxyaldehydes and unsaturated ketoesters. Tetrahedron: Asymmetry, 2017, 28, 355-366.	1.8	16
28	Visible-Light-Mediated Reactions of Electrophilic Radicals with Vinyl and Allyl Trifluoroborates. ACS Catalysis, 2017, 7, 4126-4130.	5.5	52
29	Photochemical Perfluoroalkylation with Pyridine N -Oxides: Mechanistic Insights and Performance on a Kilogram Scale. CheM, 2016, 1, 456-472.	5.8	221
30	Visible-light-mediated generation of nitrile oxides for the photoredox synthesis of isoxazolines and isoxazoles. Chemical Communications, 2016, 52, 12302-12305.	2.2	40
31	Visible Light Photocatalysis: Applications and New Disconnections in the Synthesis of Pharmaceutical Agents. Organic Process Research and Development, 2016, 20, 1134-1147.	1.3	293
32	Preparative Scale Demonstration and Mechanistic Investigation of a Visible Light-Mediated Radical Smiles Rearrangement. Organic Process Research and Development, 2016, 20, 1148-1155.	1.3	29
33	A Visibleâ€Lightâ€Mediated Radical Smiles Rearrangement and its Application to the Synthesis of a Difluoroâ€Substituted Spirocyclic ORLâ€1 Antagonist. Angewandte Chemie - International Edition, 2015, 54, 14898-14902.	7.2	152
34	A Visibleâ€Lightâ€Mediated Radical Smiles Rearrangement and its Application to the Synthesis of a Difluoroâ€Substituted Spirocyclic ORLâ€1 Antagonist. Angewandte Chemie, 2015, 127, 15111-15115.	1.6	32
35	Stereo―and Chemodivergent NHCâ€Promoted Functionalisation of Arylalkylketenes with Chloral. Chemistry - A European Journal, 2015, 21, 16354-16358.	1.7	24
36	A scalable and operationally simple radical trifluoromethylation. Nature Communications, 2015, 6, 7919.	5.8	316

JAMES J DOUGLAS

#	Article	IF	CITATIONS
37	Ligand functionalization as a deactivation pathway in a fac-lr(ppy) ₃ -mediated radical addition. Chemical Science, 2015, 6, 537-541.	3.7	98
38	Photoredox Catalysis in a Complex Pharmaceutical Setting: Toward the Preparation of JAK2 Inhibitor LY2784544. Journal of Organic Chemistry, 2014, 79, 11631-11643.	1.7	78
39	α-Ketophosphonates as Ester Surrogates: Isothiourea-Catalyzed Asymmetric Diester and Lactone Synthesis. Organic Letters, 2014, 16, 2506-2509.	2.4	47
40	Isothiourea-Catalyzed Asymmetric Synthesis of β-Lactams and β-Amino Esters from Arylacetic Acid Derivatives and <i>N</i> -Sulfonylaldimines. Journal of Organic Chemistry, 2014, 79, 1626-1639.	1.7	77
41	Isothiourea-mediated asymmetric Michael-lactonisation of trifluoromethylenones: a synthetic and mechanistic study. Chemical Science, 2013, 4, 4146.	3.7	117
42	Stereospecific Asymmetric N-Heterocyclic Carbene (NHC)-Catalyzed Redox Synthesis of Trifluoromethyl Dihydropyranones and Mechanistic Insights. Journal of Organic Chemistry, 2013, 78, 9243-9257.	1.7	64
43	NHC-Promoted Asymmetric β-Lactone Formation from Arylalkylketenes and Electron-Deficient Benzaldehydes or Pyridinecarboxaldehydes. Journal of Organic Chemistry, 2013, 78, 3925-3938.	1.7	66
44	NHCs in Asymmetric Organocatalysis: Recent Advances in Azolium Enolate Generation and Reactivity. Synthesis, 2012, 44, 2295-2309.	1.2	235
45	NHCâ€Mediated Chlorination of Unsymmetrical Ketenes: Catalysis and Asymmetry. European Journal of Organic Chemistry, 2010, 2010, 5863-5869.	1.2	43
46	Chiral relay in NHC-mediated asymmetric β-lactam synthesis I; substituent effects in NHCs derived from (1R,2R)-cyclohexane-1,2-diamine. Tetrahedron: Asymmetry, 2010, 21, 582-600.	1.8	41
47	A Desaturative Approach for Aromatic Aldehyde Synthesis via Synergistic Enamine, Photoredox and Cobalt Triple Catalysis. Angewandte Chemie, 0, , .	1.6	1