MarÃa Teresa PortolÃ%PÃ%cz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7028008/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Human and Porcine Adipose Extracellular Matrices Decellularized by Enzymatic or Chemical Methods on Macrophage Polarization and Immunocompetence. International Journal of Molecular Sciences, 2021, 22, 3847.	1.8	17
2	Effects of Ipriflavone-Loaded Mesoporous Nanospheres on the Differentiation of Endothelial Progenitor Cells and Their Modulation by Macrophages. Nanomaterials, 2021, 11, 1102.	1.9	12
3	Candida albicans/Macrophage Biointerface on Human and Porcine Decellularized Adipose Matrices. Journal of Fungi (Basel, Switzerland), 2021, 7, 392.	1.5	3
4	Benefits in the Macrophage Response Due to Graphene Oxide Reduction by Thermal Treatment. International Journal of Molecular Sciences, 2021, 22, 6701.	1.8	14
5	Effective Actions of Ion Release from Mesoporous Bioactive Glass and Macrophage Mediators on the Differentiation of Osteoprogenitor and Endothelial Progenitor Cells. Pharmaceutics, 2021, 13, 1152.	2.0	14
6	An Immunological Approach to the Biocompatibility of Mesoporous SiO2-CaO Nanospheres. International Journal of Molecular Sciences, 2020, 21, 8291.	1.8	17
7	Ipriflavone-Loaded Mesoporous Nanospheres with Potential Applications for Periodontal Treatment. Nanomaterials, 2020, 10, 2573.	1.9	24
8	Characterization of M1 and M2 polarization phenotypes in peritoneal macrophages after treatment with graphene oxide nanosheets. Colloids and Surfaces B: Biointerfaces, 2019, 176, 96-105.	2.5	49
9	Differential effects of graphene oxide nanosheets on Candida albicans phagocytosis by murine peritoneal macrophages. Journal of Colloid and Interface Science, 2018, 512, 665-673.	5.0	21
10	Multifunctional pH sensitive 3D scaffolds for treatment and prevention of bone infection. Acta Biomaterialia, 2018, 65, 450-461.	4.1	68
11	Incorporation and effects of mesoporous SiO2-CaO nanospheres loaded with ipriflavone on osteoblast/osteoclast cocultures. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 258-268.	2.0	23
12	Graphene oxide nanosheets increase Candida albicans killing by pro-inflammatory and reparative peritoneal macrophages. Colloids and Surfaces B: Biointerfaces, 2018, 171, 250-259.	2.5	23
13	High glucose alters the secretome of mechanically stimulated osteocyteâ€like cells affecting osteoclast precursor recruitment and differentiation. Journal of Cellular Physiology, 2017, 232, 3611-3621.	2.0	15
14	MC3T3-E1 pre-osteoblast response and differentiation after graphene oxide nanosheet uptake. Colloids and Surfaces B: Biointerfaces, 2017, 158, 33-40.	2.5	19
15	Potentiality of Graphene-Based Materials for Neural Repair. Carbon Nanostructures, 2016, , 159-190.	0.1	0
16	Nanocrystallinity effects on osteoblast and osteoclast response to silicon substituted hydroxyapatite. Journal of Colloid and Interface Science, 2016, 482, 112-120.	5.0	34
17	Effects of immobilized VEGF on endothelial progenitor cells cultured on silicon substituted and nanocrystalline hydroxyapatites. RSC Advances, 2016, 6, 92586-92595.	1.7	12
18	Influence of the covalent immobilization of graphene oxide in poly(vinyl alcohol) on human osteoblast response. Colloids and Surfaces B: Biointerfaces, 2016, 138, 50-59.	2.5	20

#	Article	IF	CITATIONS
19	Effects of nanocrystalline hydroxyapatites on macrophage polarization. Journal of Materials Chemistry B, 2016, 4, 1951-1959.	2.9	38
20	Effects of bleaching on osteoclast activity and their modulation by osteostatin and fibroblast growth factor 2. Journal of Colloid and Interface Science, 2016, 461, 285-291.	5.0	5
21	Neural Regeneration: Subacute Tissue Response to 3D Graphene Oxide Scaffolds Implanted in the Injured Rat Spinal Cord (Adv. Healthcare Mater. 12/2015). Advanced Healthcare Materials, 2015, 4, 1892-1892.	3.9	0
22	Subacute Tissue Response to 3D Graphene Oxide Scaffolds Implanted in the Injured Rat Spinal Cord. Advanced Healthcare Materials, 2015, 4, 1861-1868.	3.9	51
23	Response of osteoblasts and preosteoblasts to calcium deficient and Si substituted hydroxyapatites treated at different temperatures. Colloids and Surfaces B: Biointerfaces, 2015, 133, 304-313.	2.5	21
24	Design of tunable protein-releasing nanoapatite/hydrogel scaffolds for hard tissue engineering. Materials Chemistry and Physics, 2014, 144, 409-417.	2.0	18
25	Triggering cell death by nanographene oxide mediated hyperthermia. Nanotechnology, 2014, 25, 035101.	1.3	19
26	Early in vitro response of macrophages and T lymphocytes to nanocrystalline hydroxyapatites. Journal of Colloid and Interface Science, 2014, 416, 59-66.	5.0	9
27	Effects of 3D nanocomposite bioceramic scaffolds on the immune response. Journal of Materials Chemistry B, 2014, 2, 3469.	2.9	14
28	Tailoring hierarchical meso–macroporous 3D scaffolds: from nano to macro. Journal of Materials Chemistry B, 2014, 2, 49-58.	2.9	35
29	In vitro evaluation of graphene oxide nanosheets on immune function. Journal of Colloid and Interface Science, 2014, 432, 221-228.	5.0	61
30	Endocytic Mechanisms of Graphene Oxide Nanosheets in Osteoblasts, Hepatocytes and Macrophages. ACS Applied Materials & Interfaces, 2014, 6, 13697-13706.	4.0	147
31	Nanocrystalline silicon substituted hydroxyapatite effects on osteoclast differentiation and resorptive activity. Journal of Materials Chemistry B, 2014, 2, 2910.	2.9	34
32	Evaluation of the in vitro biocompatibility of PMMA/high-load HA/carbon nanostructures bone cement formulations. Journal of Materials Science: Materials in Medicine, 2013, 24, 2787-2796.	1.7	34
33	Nanoâ€Graphene Oxide: A Potential Multifunctional Platform for Cancer Therapy. Advanced Healthcare Materials, 2013, 2, 1072-1090.	3.9	154
34	Biocompatibility and levofloxacin delivery of mesoporous materials. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 115-124.	2.0	45
35	The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations. Biomaterials, 2013, 34, 1562-1569.	5.7	130
36	New Nanocomposite System with Nanocrystalline Apatite Embedded into Mesoporous Bioactive Glass. Chemistry of Materials, 2012, 24, 1100-1106.	3.2	35

#	Article	IF	CITATIONS
37	Osteostatin improves the osteogenic activity of fibroblast growth factor-2 immobilized in Si-doped hydroxyapatite in osteoblastic cells. Acta Biomaterialia, 2012, 8, 2770-2777.	4.1	40
38	In Vitro Biocompatibility and Antimicrobial Activity of Poly(ε-caprolactone)/Montmorillonite Nanocomposites. Biomacromolecules, 2012, 13, 4247-4256.	2.6	45
39	Cell uptake survey of pegylated nanographene oxide. Nanotechnology, 2012, 23, 465103.	1.3	52
40	Signaling Pathways of Immobilized FGFâ€2 on Siliconâ€5ubstituted Hydroxyapatite. Macromolecular Bioscience, 2012, 12, 446-453.	2.1	19
41	Osteoconductive Performance of Carbon Nanotube Scaffolds Homogeneously Mineralized by Flowâ€Through Electrodeposition. Advanced Functional Materials, 2012, 22, 4411-4420.	7.8	46
42	<i>In vitro</i> evaluation of glass–glass ceramic thermoseedâ€induced hyperthermia on human osteosarcoma cell line. Journal of Biomedical Materials Research - Part A, 2012, 100A, 64-71.	2.1	19
43	Covalently bonded dendrimer-maghemite nanosystems: nonviral vectors for in vitro gene magnetofection. Journal of Materials Chemistry, 2011, 21, 4598.	6.7	42
44	Immobilization and bioactivity evaluation of FGF-1 and FGF-2 on powdered silicon-doped hydroxyapatite and their scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2011, 22, 405-416.	1.7	32
45	Inhibition of bacterial adhesion on biocompatible zwitterionic SBA-15 mesoporous materials. Acta Biomaterialia, 2011, 7, 2977-2985.	4.1	62
46	Progenitor-derived endothelial cell response, platelet reactivity and haemocompatibility parameters indicate the potential of NaOH-treated polycaprolactone for vascular tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 238-247.	1.3	9
47	Suppression of anoikis by collagen coating of interconnected macroporous nanometric carbonated hydroxyapatite/agarose scaffolds. Journal of Biomedical Materials Research - Part A, 2010, 95A, 793-800.	2.1	19
48	Interaction of an ordered mesoporous bioactive glass with osteoblasts, fibroblasts and lymphocytes, demonstrating its biocompatibility as a potential bone graft material. Acta Biomaterialia, 2010, 6, 892-899.	4.1	110
49	L929 fibroblast and Saosâ€2 osteoblast response to hydroxyapatiteâ€Î²TCP/agarose biomaterial. Journal of Biomedical Materials Research - Part A, 2009, 89A, 539-549.	2.1	28
50	Biocompatibility markers for the study of interactions between osteoblasts and composite biomaterials. Biomaterials, 2009, 30, 45-51.	5.7	52
51	Nitric oxide production by endothelial cells derived from blood progenitors cultured on NaOH-treated polycaprolactone films: A biofunctionality study. Acta Biomaterialia, 2009, 5, 2045-2053.	4.1	26
52	Endothelial cells derived from circulating progenitors as an effective source to functional endothelialization of NaOHâ€treated poly(εâ€caprolactone) films. Journal of Biomedical Materials Research - Part A, 2008, 87A, 964-971.	2.1	30
53	<i>In Vitro</i> Positive Biocompatibility Evaluation of Glass–Glass Ceramic Thermoseeds for Hyperthermic Treatment of Bone Tumors. Tissue Engineering - Part A, 2008, 14, 617-627.	1.6	26
54	Mitochondrial membrane potential and reactive oxygen species content of endothelial and smooth muscle cells cultured on poly(Îμ-caprolactone) films. Biomaterials, 2006, 27, 4706-4714.	5.7	44

#	Article	IF	CITATIONS
55	Alkaline-treated poly(ε-caprolactone) films: Degradation in the presence or absence of fibroblasts. Journal of Biomedical Materials Research - Part A, 2006, 76A, 788-797.	2.1	37
56	Vascular Endothelial and Smooth Muscle Cell Culture on NaOH-Treated Poly(É›-caprolactone) Films: A Preliminary Study for Vascular Graft Development. Macromolecular Bioscience, 2005, 5, 415-423.	2.1	67
57	A Customizable Instrument for Measuring the Mechanical Properties of Thin Biomedical Membranes. Macromolecular Materials and Engineering, 2005, 290, 953-960.	1.7	Ο
58	Transitory oxidative stress in L929 fibroblasts cultured on poly(Îμ-caprolactone) films. Biomaterials, 2005, 26, 5827-5834.	5.7	37
59	Effect of Bile Acids on Butyrate-Sensitive and -Resistant Human Colon Adenocarcinoma Cells. Nutrition and Cancer, 2005, 53, 208-219.	0.9	11
60	Induction of nitric oxide synthase-2 proceeds with the concomitant downregulation of the endogenous caveolin levels. Journal of Cell Science, 2004, 117, 1687-1697.	1.2	20
61	In vitro biocompatibility assessment of poly(\$epsiv;-caprolactone) films using L929 mouse fibroblasts. Biomaterials, 2004, 25, 5603-5611.	5.7	252
62	Action of E. coli endotoxin, IL-1beta and TNF-alpha on antioxidant status of cultured hepatocytes. Molecular and Cellular Biochemistry, 2002, 231, 75-82.	1.4	7
63	Escherichia colilipopolysaccharide effects on proliferating rat liver cells in culture: a morphological and functional study. Tissue and Cell, 1999, 31, 1-7.	1.0	6
64	Calcium and reactive oxygen species as messengers in endotoxin action on adrenocortical cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1999, 1454, 1-10.	1.8	8
65	Hepatic response to the oxidative stress induced by E. coli endotoxin: Glutathione as an index of the acute phase during the endotoxic shock. Molecular and Cellular Biochemistry, 1996, 159, 115-121.	1.4	28
66	The induction of lipid peroxidation by E. coli lipopolysaccharide on rat hepatocytes as an important factor in the etiology of endotoxic liver damage. Biochimica Et Biophysica Acta - General Subjects, 1993, 1158, 287-292.	1.1	42
67	Intracellular calcium and pH alterations induced by Escherichia coli endotoxin in rat hepatocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1092, 1-6.	1.9	26
68	Binding studies and localization ofEscherichia coli lipopolysaccharide in cultured hepatocytes by an immunocolloidal-gold technique. The Histochemical Journal, 1991, 23, 221-228.	0.6	15
69	Involvement of cytochrome b5 in the cytotoxic response to Escherichia coli Lipopolysaccharide. Molecular and Cellular Biochemistry, 1989, 87, 79-84.	1.4	7
70	Effect ofEscherichia coli lipopolysaccharide on the microviscosity of liver plasma membranes and hepatocyte suspensions and monolayers. Cell Biochemistry and Function, 1987, 5, 55-61.	1.4	28
71	Effect of Escherichia coli lipopolysaccharide on the glucagon and insulin binding to isolated rat hepatocytes. Molecular and Cellular Biochemistry, 1984, 65, 37-44.	1.4	10
72	The binding ofEscherichia coliendotoxin to isolated rat hepatocytes. FEBS Letters, 1981, 131, 103-107.	1.3	36