Kengo Inoue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7027929/publications.pdf

Version: 2024-02-01

471371 434063 2,162 34 17 31 h-index citations g-index papers 35 35 35 2462 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Performance of stacked microbial fuel cells with barley–shochu waste. Journal of Bioscience and Bioengineering, 2022, 133, 467-473.	1.1	5
2	Proteolytic Maturation of the Outer Membrane <i>c</i> -Type Cytochrome OmcZ by a Subtilisin-Like Serine Protease Is Essential for Optimal Current Production by Geobacter sulfurreducens. Applied and Environmental Microbiology, 2021, 87, e0261720.	1.4	5
3	Crystal structure of the ferredoxin reductase component of carbazole 1,9a-dioxygenase from <i>Janthinobacterium </i> sp. J3. Acta Crystallographica Section D: Structural Biology, 2021, 77, 921-932.	1.1	1
4	Complete Genome Sequence of High Current-Producing Geobacter sulfurreducens Strain YM35, Isolated from River Sediment in Japan. Microbiology Resource Announcements, 2021, 10, e0053921.	0.3	2
5	Unexpected genomic features of high current density-producing <i>Geobacter sulfurreducens</i> strain YM18. FEMS Microbiology Letters, 2021, 368, .	0.7	8
6	Determination of Plasmid pSN1216-29 Host Range and the Similarity in Oligonucleotide Composition Between Plasmid and Host Chromosomes. Frontiers in Microbiology, 2020, 11, 1187.	1.5	4
7	Extracellular Electron Transfer in Bioelectrochemically Active Microorganisms. , 2020, , 33-41.		4
8	Electricity generation from sweet potato-shochu waste using microbial fuel cells. Journal of Bioscience and Bioengineering, 2019, 128, 56-63.	1.1	22
9	Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium. Journal of Hazardous Materials, 2018, 342, 561-570.	6.5	120
10	Novel Self-Transmissible and Broad-Host-Range Plasmids Exogenously Captured From Anaerobic Granules or Cow Manure. Frontiers in Microbiology, 2018, 9, 2602.	1.5	23
11	Electricity Generation from Rice Bran by a Microbial Fuel Cell and the Influence of Hydrodynamic Cavitation Pretreatment. ACS Omega, 2018, 3, 15267-15271.	1.6	32
12	Complete Genome Sequence of Geobacter sulfurreducens Strain YM18, Isolated from River Sediment in Japan. Genome Announcements, 2018, 6, .	0.8	3
13	A Basic Introduction to Aerobic Biodegradation of Petroleum Aromatic Compounds. , 2015, , 5.1.5-1-5.1.5-18.		0
14	Structural Basis of the Divergent Oxygenation Reactions Catalyzed by the Rieske Nonheme Iron Oxygenase Carbazole 1,9a-Dioxygenase. Applied and Environmental Microbiology, 2014, 80, 2821-2832.	1.4	12
15	Uptake of self-secreted flavins as bound cofactors for extracellular electron transfer in <i>Geobacter</i> species. Energy and Environmental Science, 2014, 7, 1357-1361.	15.6	176
16	Electricity generation from cattle manure slurry by cassette-electrode microbial fuel cells. Journal of Bioscience and Bioengineering, 2013, 116, 610-615.	1.1	49
17	Structural insight into the substrate- and dioxygen-binding manner in the catalytic cycle of rieske nonheme iron oxygenase system, carbazole 1,9a-dioxygenase. BMC Structural Biology, 2012, 12, 15.	2.3	41
18	Identification of Multicomponent Histidine-Aspartate Phosphorelay System Controlling Flagellar and Motility Gene Expression in Geobacter Species. Journal of Biological Chemistry, 2012, 287, 10958-10966.	1.6	20

#	Article	IF	CITATIONS
19	Specific localization of the <i>c</i> a€type cytochrome OmcZ at the anode surface in currentâ€producing biofilms of <i>Geobacter sulfurreducens</i> . Environmental Microbiology Reports, 2011, 3, 211-217.	1.0	214
20	Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 404-412.	0.5	154
21	Tunable metallic-like conductivity in microbial nanowire networks. Nature Nanotechnology, 2011, 6, 573-579.	15.6	762
22	Crystallization and preliminary X-ray diffraction studies of a ferredoxin reductase component of carbazole 1,9a-dioxygenase fromNovosphingobiumsp. KA1. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 712-714.	0.7	4
23	Crystallization and preliminary X-ray diffraction studies of a terminal oxygenase of carbazole 1,9a-dioxygenase fromNovosphingobiumsp. KA1. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1480-1483.	0.7	3
24	Purification and Characterization of OmcZ, an Outer-Surface, Octaheme <i>c</i> -Type Cytochrome Essential for Optimal Current Production by <i>Geobacter sulfurreducens</i> Applied and Environmental Microbiology, 2010, 76, 3999-4007.	1.4	227
25	Specific Interactions between the Ferredoxin and Terminal Oxygenase Components of a Class IIB Rieske Nonheme Iron Oxygenase, Carbazole 1,9a-Dioxygenase. Journal of Molecular Biology, 2009, 392, 436-451.	2.0	28
26	Crystallization and preliminary X-ray diffraction studies of a novel ferredoxin involved in the dioxygenation of carbazole byNovosphingobiumsp. KA1. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 632-635.	0.7	5
27	1P-023 Crystal structure of the ferredoxin reductase component in the Rieske non-heme iron oxygenase system, carbazole 1, 9a-dioxygenase(The 46th Annual Meeting of the Biophysical Society of) Tj ETQq1	100078431	l 4 orgBT /Cv
28	The Sphingomonas Plasmid pCAR3 Is Involved in Complete Mineralization of Carbazole. Journal of Bacteriology, 2007, 189, 2007-2020.	1.0	55
29	Crystallization and preliminary X-ray diffraction studies of the ferredoxin reductase component in the Rieske nonhaem iron oxygenase system carbazole 1,9a-dioxygenase. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 499-502.	0.7	9
30	Crystallization and preliminary crystallographic analysis of the ferredoxin component of carbazole 1,9a-dioxygenase from <i>Nocardioides aromaticivorans</i> Iclivitaria Biology Communications, 2007, 63, 855-857.	0.7	5
31	Crystallization and preliminary X-ray diffraction studies of the terminal oxygenase component of carbazole 1,9a-dioxygenase fromNocardioides aromaticivoransIC177. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 1212-1214.	0.7	6
32	Characterization of Novel Carbazole Catabolism Genes from Gram-Positive Carbazole Degrader Nocardioides aromaticivorans IC177. Applied and Environmental Microbiology, 2006, 72, 3321-3329.	1.4	58
33	Diversity of carbazole-degrading bacteria having thecargene cluster: Isolation of a novel gram-positive carbazole-degrading bacterium. FEMS Microbiology Letters, 2005, 245, 145-153.	0.7	56
34	Divergent Structures of Carbazole DegradativecarOperons Isolated from Gram-negative Bacteria. Bioscience, Biotechnology and Biochemistry, 2004, 68, 1467-1480.	0.6	48