Jenny Y Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7027922/publications.pdf

Version: 2024-02-01

125106 139680 3,812 71 35 61 h-index citations g-index papers 82 82 82 3555 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cationic Effects on the Net Hydrogen Atom Bond Dissociation Free Energy of High-Valent Manganese Imido Complexes. Journal of the American Chemical Society, 2022, 144, 1503-1508.	6.6	20
2	From Pollutant to Chemical Feedstock: Valorizing Carbon Dioxide through Photo- and Electrochemical Processes. Accounts of Chemical Research, 2022, 55, 931-932.	7.6	13
3	NGenE 2021: Electrochemistry Is Everywhere. ACS Energy Letters, 2022, 7, 368-374.	8.8	6
4	Inverse molecular design of alkoxides and phenoxides for aqueous direct air capture of CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
5	Heterogeneous Interfaces through the Lens of Inorganic Chemistry. Inorganic Chemistry, 2021, 60, 6853-6854.	1.9	O
6	Inhibiting the Hydrogen Evolution Reaction (HER) with Proximal Cations: A Strategy for Promoting Selective Electrocatalytic Reduction. ACS Catalysis, 2021, 11, 8155-8164.	5.5	32
7	Electric Fields in Catalysis: From Enzymes to Molecular Catalysts. ACS Catalysis, 2021, 11, 10923-10932.	5.5	67
8	Synthesis and redox properties of heterobimetallic Re(bpyCrown-M)(CO)3Cl complexes, where MÂ=ÂNa+, K+, Ca2+, and Ba2+. Polyhedron, 2021, 208, 115385.	1.0	10
9	Electrochemical studies of tris(cyclopentadienyl)thorium and uranium complexes in the +2, +3, and +4 oxidation states. Chemical Science, 2021, 12, 8501-8511.	3.7	25
10	Uniting biological and chemical strategies for selective CO2 reduction. Nature Catalysis, 2021, 4, 928-933.	16.1	72
11	Electrochemical Characterization of Isolated Nitrogenase Cofactors from <i>Azotobacter vinelandii</i> . ChemBioChem, 2020, 21, 1773-1778.	1.3	9
12	Reversible and Selective CO ₂ to HCO ₂ ^{â^'} Electrocatalysis near the Thermodynamic Potential. Angewandte Chemie - International Edition, 2020, 59, 4443-4447.	7.2	40
13	Kinetic and mechanistic analysis of a synthetic reversible CO ₂ /HCO ₂ ^{â^'} electrocatalyst. Chemical Communications, 2020, 56, 12965-12968.	2.2	16
14	Selective Electrocatalytic Reduction of CO2 to HCO2â^'. Trends in Chemistry, 2020, 2, 401-402.	4.4	0
15	Stabilization of U(III) to Oxidation and Hydrolysis by Encapsulation Using 2.2.2-Cryptand. Inorganic Chemistry, 2020, 59, 17077-17083.	1.9	5
16	Bioinspiration in light harvesting and catalysis. Nature Reviews Materials, 2020, 5, 828-846.	23.3	136
17	Using nature's blueprint to expand catalysis with Earth-abundant metals. Science, 2020, 369, .	6.0	306
18	Reducing CO ₂ to HCO ₂ ^{â€"} at Mild Potentials: Lessons from Formate Dehydrogenase. Journal of the American Chemical Society, 2020, 142, 19438-19445.	6.6	55

#	Article	IF	CITATIONS
19	Decoupling Kinetics and Thermodynamics of Interfacial Catalysis at a Chemically Modified Black Silicon Semiconductor Photoelectrode. ACS Energy Letters, 2020, 5, 1848-1855.	8.8	8
20	Single molecule magnet behaviour in a square planar $S=1/2$ Co(ii) complex and spin-state assignment of multiple relaxation modes. Chemical Communications, 2020, 56, 6711-6714.	2.2	14
21	Modular synthesis of symmetric proazaphosphatranes bearing heteroatom groups. Tetrahedron Letters, 2020, 61, 152056.	0.7	0
22	Checking in with Women Materials Scientists During a Global Pandemic: May 2020. Chemistry of Materials, 2020, 32, 4859-4862.	3.2	3
23	Highly Selective Electrocatalytic CO ₂ Reduction by [Pt(dmpe) ₂] ²⁺ through Kinetic and Thermodynamic Control. Organometallics, 2020, 39, 1491-1496.	1.1	20
24	Reversible and Selective CO 2 to HCO 2 \hat{a} Electrocatalysis near the Thermodynamic Potential. Angewandte Chemie, 2020, 132, 4473-4477.	1.6	1
25	Promoting proton coupled electron transfer in redox catalysts through molecular design. Chemical Communications, 2019, 55, 10342-10358.	2.2	51
26	Molecular Insights into Heterogeneous Processes in Energy Storage and Conversion. ACS Energy Letters, 2019, 4, 2201-2204.	8.8	3
27	Installation of internal electric fields by non-redox active cations in transition metal complexes. Chemical Science, 2019, 10, 10135-10142.	3.7	55
28	Thermodynamic Considerations for Optimizing Selective CO ₂ Reduction by Molecular Catalysts. ACS Central Science, 2019, 5, 580-588.	5.3	86
29	SDSâ€modified Nanoporous Silver as an Efficient Electrocatalyst for Selectively Converting CO 2 to CO in Aqueous Solution. Chinese Journal of Chemistry, 2019, 37, 337-341.	2.6	12
30	Proton-Coupled Electron Transfer at Anthraquinone Modified Indium Tin Oxide Electrodes. ACS Applied Energy Materials, 2019, 2, 59-65.	2.5	16
31	pH-Dependent Reactivity of a Water-Soluble Nickel Complex: Hydrogen Evolution vs Selective Electrochemical Hydride Generation. Organometallics, 2019, 38, 1286-1291.	1.1	14
32	Crystal structure of NiFe(CO) ₅ [tris(pyridylmethyl)azaphosphatrane]: a synthetic mimic of the NiFe hydrogenase active site incorporating a pendant pyridine base. Acta Crystallographica Section E: Crystallographic Communications, 2019, 75, 438-442.	0.2	4
33	Interfacial Electron Transfer of Ferrocene Immobilized onto Indium Tin Oxide through Covalent and Noncovalent Interactions. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13211-13217.	4.0	37
34	Intramolecular hydrogen-bonding in a cobalt aqua complex and electrochemical water oxidation activity. Chemical Science, 2018, 9, 2750-2755.	3.7	27
35	Incorporation of redox-inactive cations promotes iron catalyzed aerobic C–H oxidation at mild potentials. Chemical Science, 2018, 9, 2567-2574.	3.7	77
36	For CO2 Reduction, Hydrogen-Bond Donors Do the Trick. ACS Central Science, 2018, 4, 315-317.	5.3	7

#	Article	IF	CITATIONS
37	Directing the reactivity of metal hydrides for selective CO ₂ reduction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12686-12691.	3.3	87
38	Adaptable ligand donor strength: tracking transannular bond interactions in tris(2-pyridylmethyl)-azaphosphatrane (TPAP). Dalton Transactions, 2018, 47, 14101-14110.	1.6	12
39	Cationic Charges Leading to an Inverse Freeâ€Energy Relationship for Nâ^'N Bond Formation by Mn VI Nitrides. Angewandte Chemie, 2018, 130, 14233-14238.	1.6	7
40	Cationic Charges Leading to an Inverse Freeâ€Energy Relationship for Nâ^N Bond Formation by Mn ^{VI} Nitrides. Angewandte Chemie - International Edition, 2018, 57, 14037-14042.	7.2	59
41	Redox Potential and Electronic Structure Effects of Proximal Nonredox Active Cations in Cobalt Schiff Base Complexes. Inorganic Chemistry, 2017, 56, 3713-3718.	1.9	80
42	$CO < sub > 2 < / sub > reduction or HCO < sub > 2 < / sub > < sup > \hat{a}^{\circ} < / sup > oxidation? Solvent-dependent thermochemistry of a nickel hydride complex. Chemical Communications, 2017, 53, 7405-7408.$	2.2	30
43	Copper tetradentate N2Py2 complexes with pendant bases in the secondary coordination sphere: improved ligand synthesis and protonation studies. Journal of Coordination Chemistry, 2016, 69, 1990-2002.	0.8	4
44	Electrocatalytic Hydrogen Evolution under Acidic Aqueous Conditions and Mechanistic Studies of a Highly Stable Molecular Catalyst. Journal of the American Chemical Society, 2016, 138, 14174-14177.	6.6	92
45	Spin-state diversity in a series of Co(<scp>ii</scp>) PNP pincer bromide complexes. Dalton Transactions, 2016, 45, 17910-17917.	1.6	32
46	Chemical modification of gold electrodes via non-covalent interactions. Inorganic Chemistry Frontiers, 2016, 3, 836-841.	3.0	18
47	Electronic and steric Tolman parameters for proazaphosphatranes, the superbase core of the tri(pyridylmethyl)azaphosphatrane (TPAP) ligand. Dalton Transactions, 2016, 45, 9853-9859.	1.6	30
48	Solvation Effects on Transition Metal Hydricity. Journal of the American Chemical Society, 2015, 137, 14114-14121.	6.6	75
49	Flexibility is Key: Synthesis of a Tripyridylamine (TPA) Congener with a Phosphorus Apical Donor and Coordination to Cobalt(II). Inorganic Chemistry, 2015, 54, 11505-11510.	1.9	18
50	Reactivity of a Series of Isostructural Cobalt Pincer Complexes with CO ₂ , CO, and H ⁺ . Inorganic Chemistry, 2014, 53, 13031-13041.	1.9	41
51	Two Pathways for Electrocatalytic Oxidation of Hydrogen by a Nickel Bis(diphosphine) Complex with Pendant Amines in the Second Coordination Sphere. Journal of the American Chemical Society, 2013, 135, 9700-9712.	6.6	119
52	Incorporation of Hydrogenâ€Bonding Functionalities into the Second Coordination Sphere of Ironâ€Based Waterâ€Oxidation Catalysts. European Journal of Inorganic Chemistry, 2013, 2013, 3846-3857.	1.0	70
53	Proton Delivery and Removal in [Ni(P ^{R^{R^{R^{«sup>₂)₂]²⁺ Hydrogen Production and Oxidation Catalysts. Journal of the American Chemical Society, 2012, 134, 19409-19424.}}}}	6.6	122
54	Distant protonated pyridine groups in water-soluble iron porphyrin electrocatalysts promote selective oxygen reduction to water. Chemical Communications, 2012, 48, 11100.	2.2	104

#	Article	IF	CITATIONS
55	Stabilization of Nickel Complexes with NiO···H–N Bonding Interactions Using Sterically Demanding Cyclic Diphosphine Ligands. Organometallics, 2012, 31, 144-156.	1.1	66
56	Reversible Electrocatalytic Production and Oxidation of Hydrogen at Low Overpotentials by a Functional Hydrogenase Mimic. Angewandte Chemie - International Edition, 2012, 51, 3152-3155.	7.2	128
57	Moving Protons with Pendant Amines: Proton Mobility in a Nickel Catalyst for Oxidation of Hydrogen. Journal of the American Chemical Society, 2011, 133, 14301-14312.	6.6	151
58	[Ni(P ^{Ph} ₂ N ^{Bn} ₂) ₂ (CH ₃ CN)] ^{2-as an Electrocatalyst for H₂ Production: Dependence on Acid Strength and Isomer Distribution. ACS Catalysis, 2011, 1, 777-785.}	+	104
59	Electrocatalytic Oxidation of Formate by [Ni(P ^{R3€2} ₂) ₂ (CH ₃ CN)] ^{2 Complexes. Journal of the American Chemical Society, 2011, 133, 12767-12779.}	2-6	107
60	Fast and efficient molecular electrocatalysts for H ₂ production: Using hydrogenase enzymes as guides. MRS Bulletin, 2011, 36, 39-47.	1.7	67
61	Reduction of oxygen catalyzed by nickel diphosphine complexes with positioned pendant amines. Dalton Transactions, 2010, 39, 3001.	1.6	82
62	Hydrogen oxidation catalysis by a nickel diphosphine complex with pendant tert-butyl amines. Chemical Communications, 2010, 46, 8618.	2.2	107
63	Comparison of Cobalt and Nickel Complexes with Sterically Demanding Cyclic Diphosphine Ligands: Electrocatalytic H ₂ Production by [Co(P ^{<i>t</i>} ^{Bu} ₂ N ^{Ph} ₂)(CH ₃ CN)Organometallics, 2010, 29, 5390-5401.	sub>3 <td>ub>](BF<sul< td=""></sul<></td>	ub>](BF <sul< td=""></sul<>
64	Mechanistic Insights into Catalytic H ₂ Oxidation by Ni Complexes Containing a Diphosphine Ligand with a Positioned Amine Base. Journal of the American Chemical Society, 2009, 131, 5935-5945.	6.6	161
65	Manganese amido-imine bisphenol Hangman complexes. Tetrahedron Letters, 2008, 49, 4796-4798.	0.7	11
66	Hangman Salen Platforms Containing Dibenzofuran Scaffolds. ChemSusChem, 2008, 1, 941-949.	3.6	18
67	Hydrogen production using cobalt-based molecular catalysts containing a proton relay in the second coordination sphere. Energy and Environmental Science, 2008, 1, 167.	15.6	164
68	Catalase and Epoxidation Activity of Manganese Salen Complexes Bearing Two Xanthene Scaffolds. Journal of the American Chemical Society, 2007, 129, 8192-8198.	6.6	66
69	Mechanistic Studies of Hangman Salophen-Mediated Activation of Oâ^'O Bonds. Inorganic Chemistry, 2006, 45, 7572-7574.	1.9	39
70	Hangman Salen Platforms Containing Two Xanthene Scaffolds. Journal of Organic Chemistry, 2006, 71, 8706-8714.	1.7	35
71	High-Nuclearity Metalâ^'Cyanide Clusters:Â Synthesis, Magnetic Properties, and Inclusion Behavior of Open-Cage Species Incorporating [(tach)M(CN)3] (M = Cr, Fe, Co) Complexes. Inorganic Chemistry, 2003, 42, 1403-1419.	1.9	125