Nadrian C Seeman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7027751/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design and self-assembly of two-dimensional DNA crystals. Nature, 1998, 394, 539-544.	27.8	2,663
2	DNA in a material world. Nature, 2003, 421, 427-431.	27.8	2,582
3	Nucleic acid junctions and lattices. Journal of Theoretical Biology, 1982, 99, 237-247.	1.7	2,110
4	DNA nanotechnology. Nature Reviews Materials, 2018, 3, .	48.7	1,268
5	Synthesis from DNA of a molecule with the connectivity of a cube. Nature, 1991, 350, 631-633.	27.8	1,254
6	Programmable materials and the nature of the DNA bond. Science, 2015, 347, 1260901.	12.6	1,141
7	Nanomaterials Based on DNA. Annual Review of Biochemistry, 2010, 79, 65-87.	11.1	933
8	From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature, 2009, 461, 74-77.	27.8	859
9	A nanomechanical device based on the B–Z transition of DNA. Nature, 1999, 397, 144-146.	27.8	817
10	A proximity-based programmable DNA nanoscale assembly line. Nature, 2010, 465, 202-205.	27.8	759
11	A robust DNA mechanical device controlled by hybridization topology. Nature, 2002, 415, 62-65.	27.8	758
12	DNA double-crossover molecules. Biochemistry, 1993, 32, 3211-3220.	2.5	753
13	Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature, 2000, 407, 493-496.	27.8	704
14	Construction, Analysis, Ligation, and Self-Assembly of DNA Triple Crossover Complexes. Journal of the American Chemical Society, 2000, 122, 1848-1860.	13.7	644
15	An immobile nucleic acid junction constructed from oligonucleotides. Nature, 1983, 305, 829-831.	27.8	574
16	A Precisely Controlled DNA Biped Walking Device. Nano Letters, 2004, 4, 1203-1207.	9.1	553
17	Construction of a DNA-Truncated Octahedron. Journal of the American Chemical Society, 1994, 116, 1661-1669.	13.7	549
18	A Bipedal DNA Brownian Motor with Coordinated Legs. Science, 2009, 324, 67-71.	12.6	544

#	Article	IF	CITATIONS
19	Designed Two-Dimensional DNA Holliday Junction Arrays Visualized by Atomic Force Microscopy. Journal of the American Chemical Society, 1999, 121, 5437-5443.	13.7	507
20	DNA-Templated Self-Assembly of Metallic Nanocomponent Arrays on a Surface. Nano Letters, 2004, 4, 2343-2347.	9.1	435
21	Two-Dimensional Nanoparticle Arrays Show the Organizational Power of Robust DNA Motifs. Nano Letters, 2006, 6, 1502-1504.	9.1	421
22	An Overview of Structural DNA Nanotechnology. Molecular Biotechnology, 2007, 37, 246-257.	2.4	402
23	Emulating biology: Building nanostructures from the bottom up. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6451-6455.	7.1	398
24	RNA double-helical fragments at atomic resolution: I. The crystal and molecular structure of sodium adenylyl-3′,5′-uridine hexahydrate. Journal of Molecular Biology, 1976, 104, 109-144.	4.2	371
25	DNA NANOTECHNOLOGY: Novel DNA Constructions. Annual Review of Biophysics and Biomolecular Structure, 1998, 27, 225-248.	18.3	370
26	From genes to machines: DNA nanomechanical devices. Trends in Biochemical Sciences, 2005, 30, 119-125.	7.5	346
27	Crystalline Twoâ€Dimensional DNAâ€Origami Arrays. Angewandte Chemie - International Edition, 2011, 50, 264-267.	13.8	344
28	Nucleic Acid Nanostructures and Topology. Angewandte Chemie - International Edition, 1998, 37, 3220-3238.	13.8	314
29	<i>De Novo</i> Design of Sequences for Nucleic Acid Structural Engineering. Journal of Biomolecular Structure and Dynamics, 1990, 8, 573-581.	3.5	311
30	Assembly of Borromean rings from DNA. Nature, 1997, 386, 137-138.	27.8	307
31	Six-Helix Bundles Designed from DNA. Nano Letters, 2005, 5, 661-665.	9.1	285
32	DNA engineering and its application to nanotechnology. Trends in Biotechnology, 1999, 17, 437-443.	9.3	276
33	Antiparallel DNA Double Crossover Molecules As Components for Nanoconstruction. Journal of the American Chemical Society, 1996, 118, 6131-6140.	13.7	254
34	Operation of a DNA Robot Arm Inserted into a 2D DNA Crystalline Substrate. Science, 2006, 314, 1583-1585.	12.6	219
35	Pseudohexagonal 2D DNA Crystals from Double Crossover Cohesion. Journal of the American Chemical Society, 2004, 126, 10230-10231.	13.7	214
36	Three-arm nucleic acid junctions are flexible. Nucleic Acids Research, 1986, 14, 9745-9753.	14.5	212

#	Article	IF	CITATIONS
37	Assembly and characterization of five-arm and six-arm DNA branched junctions. Biochemistry, 1991, 30, 5667-5674.	2.5	204
38	Sequence-Encoded Self-Assembly of Multiple-Nanocomponent Arrays by 2D DNA Scaffolding. Nano Letters, 2005, 5, 2399-2402.	9.1	195
39	Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition. Nature Chemistry, 2020, 12, 26-35.	13.6	193
40	At the Crossroads of Chemistry, Biology, and Materials. Chemistry and Biology, 2003, 10, 1151-1159.	6.0	177
41	Paranemic Crossover DNA:Â A Generalized Holliday Structure with Applications in Nanotechnology. Journal of the American Chemical Society, 2004, 126, 1666-1674.	13.7	173
42	Translation of DNA Signals into Polymer Assembly Instructions. Science, 2004, 306, 2072-2074.	12.6	167
43	Biochemistry and Structural DNA Nanotechnology:  An Evolving Symbiotic Relationship. Biochemistry, 2003, 42, 7259-7269.	2.5	163
44	Nucleic acid nanostructures: bottom-up control of geometry on the nanoscale. Reports on Progress in Physics, 2005, 68, 237-270.	20.1	161
45	Structural DNA Nanotechnology: Growing Along with <i>Nano Letters</i> . Nano Letters, 2010, 10, 1971-1978.	9.1	157
46	The design of a biochip: a self-assembling molecular-scale memory device. Protein Engineering, Design and Selection, 1987, 1, 295-300.	2.1	156
47	DNA Nicks and Nodes and Nanotechnology. Nano Letters, 2001, 1, 22-26.	9.1	153
48	DNA Components for Molecular Architecture. Accounts of Chemical Research, 1997, 30, 357-363.	15.6	145
49	Modifying the Surface Features of Two-Dimensional DNA Crystals. Journal of the American Chemical Society, 1999, 121, 917-922.	13.7	145
50	Nanotechnology and the Double Helix. Scientific American, 2004, 290, 64-75.	1.0	140
51	The Flexibility of DNA Double Crossover Molecules. Biophysical Journal, 2003, 84, 3829-3837.	O.5	136
52	Dynamic patterning programmed by DNA tiles captured on a DNA origami substrate. Nature Nanotechnology, 2009, 4, 245-248.	31.5	136
53	Assembly and Characterization of 8-Arm and 12-Arm DNA Branched Junctions. Journal of the American Chemical Society, 2007, 129, 8169-8176.	13.7	134
54	Selfassembly of Metallic Nanoparticle Arrays by DNA Scaffolding. Journal of Nanoparticle Research, 2002, 4, 313-317.	1.9	133

#	Article	IF	CITATIONS
55	Crystal Structure of a Continuous Three-Dimensional DNA Lattice. Chemistry and Biology, 2004, 11, 1119-1126.	6.0	127
56	The Label-Free Unambiguous Detection and Symbolic Display of Single Nucleotide Polymorphisms on DNA Origami. Nano Letters, 2011, 11, 910-913.	9.1	126
5 7	Simple Quantitative Model for the Reversible Association of DNA Coated Colloids. Physical Review Letters, 2009, 102, 048301.	7.8	124
58	Ligation of DNA Triangles Containing Double Crossover Molecules. Journal of the American Chemical Society, 1998, 120, 9779-9786.	13.7	121
59	The ligation and flexibility of four-arm DNA junctions. Biopolymers, 1988, 27, 1337-1352.	2.4	118
60	A synthetic DNA molecule in three knotted topologies. Journal of the American Chemical Society, 1995, 117, 1194-1200.	13.7	118
61	Six-Helix and Eight-Helix DNA Nanotubes Assembled from Half-Tubes. Nano Letters, 2007, 7, 1757-1763.	9.1	114
62	Design and synthesis of a knot from single-stranded DNA. Journal of the American Chemical Society, 1991, 113, 6306-6308.	13.7	111
63	In vivo cloning of artificial DNA nanostructures. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17626-17631.	7.1	111
64	Construction of Three-Dimensional Stick Figures from Branched DNA. DNA and Cell Biology, 1991, 10, 475-486.	1.9	105
65	Self-replication of information-bearing nanoscale patterns. Nature, 2011, 478, 225-228.	27.8	105
66	Self-assembled three-dimensional chiral colloidal architecture. Science, 2017, 358, 633-636.	12.6	105
67	A DNA decamer with a sticky end: the crystal structure of d-CGACGATCGT. Journal of Molecular Biology, 1997, 267, 881-898.	4.2	99
68	DNA Tube Structures Controlled by a Four-Way-Branched DNA Connector. Angewandte Chemie - International Edition, 2005, 44, 6074-6077.	13.8	93
69	Paranemic Cohesion of Topologically-Closed DNA Molecules. Journal of the American Chemical Society, 2002, 124, 12940-12941.	13.7	90
70	Towards self-replicating materials of DNA-functionalized colloids. Soft Matter, 2009, 5, 2422.	2.7	86
71	Circuits and programmable self-assembling DNA structures. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12577-12582.	7.1	85
72	Aggregation-disaggregation transition of DNA-coated colloids: Experiments and theory. Physical Review E, 2010, 81, 041404.	2.1	84

#	Article	IF	CITATIONS
73	Structural DNA Nanotechnology: An Overview. , 2005, 303, 143-166.		82
74	The design and engineering of nucleic acid nanoscale assemblies. Current Opinion in Structural Biology, 1996, 6, 519-526.	5.7	78
75	Amyloid fibrils nucleated and organized by DNA origami constructions. Nature Nanotechnology, 2014, 9, 537-541.	31.5	78
76	Architecture with GIDEON, a program for design in structural DNA nanotechnology. Journal of Molecular Graphics and Modelling, 2006, 25, 470-480.	2.4	77
77	Holliday Junction Crossover Topology. Journal of Molecular Biology, 1994, 236, 91-105.	4.2	75
78	Atomic force microscopy of parallel DNA branched junction arrays. Chemistry and Biology, 2000, 7, 743-751.	6.0	75
79	A DNA-based nanomechanical device with three robust states. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17245-17249.	7.1	75
80	Design and Characterization of 1D Nanotubes and 2D Periodic Arrays Self-Assembled from DNA Multi-Helix Bundles. Journal of the American Chemical Society, 2012, 134, 1606-1616.	13.7	73
81	Synthesis of a DNA knot containing both positive and negative nodes. Journal of the American Chemical Society, 1992, 114, 9652-9655.	13.7	72
82	A DNA Crystal Designed to Contain Two Molecules per Asymmetric Unit. Journal of the American Chemical Society, 2010, 132, 15471-15473.	13.7	69
83	Paranemic Crossover DNA: There and Back Again. Chemical Reviews, 2019, 119, 6273-6289.	47.7	69
84	DNA junctions, antijunctions, and mesojunctions. Biochemistry, 1992, 31, 10955-10963.	2.5	68
85	A solid-support methodology for the construction of geometrical objects from DNA. Journal of the American Chemical Society, 1992, 114, 2656-2663.	13.7	67
86	Torsional control of double-stranded DNA branch migration. , 1998, 45, 69-83.		66
87	Rolling Circle Enzymatic Replication of a Complex Multi-Crossover DNA Nanostructure. Journal of the American Chemical Society, 2007, 129, 14475-14481.	13.7	66
88	A device that operates within a self-assembled 3D DNA crystal. Nature Chemistry, 2017, 9, 824-827.	13.6	64
89	A Protein-Driven DNA Device That Measures the Excess Binding Energy of Proteins That Distort DNA. Angewandte Chemie - International Edition, 2004, 43, 4750-4752.	13.8	63
90	Functionalizing Designer DNA Crystals with a Tripleâ€Helical Veneer. Angewandte Chemie - International Edition, 2014, 53, 3979-3982.	13.8	63

#	Article	IF	CITATIONS
91	Construction and Structure Determination of a Three-Dimensional DNA Crystal. Journal of the American Chemical Society, 2016, 138, 10047-10054.	13.7	63
92	Sequential self-assembly of DNA functionalized droplets. Nature Communications, 2017, 8, 21.	12.8	63
93	Thermodynamics of DNA branching. Journal of Molecular Biology, 1992, 223, 781-789.	4.2	61
94	The design of single-stranded nucleic acid knots. Molecular Engineering, 1992, 2, 297-307.	0.2	60
95	A specific quadrilateral synthesized from DNA branched junctions. Journal of the American Chemical Society, 1989, 111, 6402-6407.	13.7	59
96	Coupling Across a DNA Helical Turn Yields a Hybrid DNA/Organic Catenane Doubly Tailed with Functional Termini. Journal of the American Chemical Society, 2008, 130, 10882-10883.	13.7	56
97	Nylon/DNA:Â Single-Stranded DNA with a Covalently Stitched Nylon Lining. Journal of the American Chemical Society, 2003, 125, 10178-10179.	13.7	55
98	Macromolecular Design, Nucleic Acid Junctions, and Crystal Formation. Journal of Biomolecular Structure and Dynamics, 1985, 3, 11-34.	3.5	54
99	DNA Scissors Device Used to Measure MutS Binding to DNA Mis-pairs. Journal of the American Chemical Society, 2010, 132, 4352-4357.	13.7	53
100	Two dimensional PNA/DNA arrays: estimating the helicity of unusual nucleic acid polymersElectronic supplementary information (ESI) available: sequence data, experimental protocols for assembly of the tiles and arrays and gel electrophoresis data demonstrating formation of the tiles. See http://www.rsc.org/suppdata/cc/b4/b401103a/. Chemical Communications, 2004, , 1694.	4.1	51
101	Atomic Force Microscopic Measurement of the Interdomain Angle in Symmetric Holliday Junctionsâ€. Biochemistry, 2002, 41, 5950-5955.	2.5	50
102	Postâ€Assembly Stabilization of Rationally Designed DNA Crystals. Angewandte Chemie - International Edition, 2015, 54, 9936-9939.	13.8	50
103	DNA Nanotechnology at 40. Nano Letters, 2020, 20, 1477-1478.	9.1	50
104	Topological Transformations of Synthetic DNA Knots. Biochemistry, 1995, 34, 673-682.	2.5	49
105	Ligation of Triangles Built from Bulged 3-Arm DNA Branched Junctions. Journal of the American Chemical Society, 1996, 118, 6121-6130.	13.7	49
106	Functional DNAzymes Organized into Two-Dimensional Arrays. Nano Letters, 2006, 6, 1505-1507.	9.1	49
107	Symmetric immobile DNA branched junctions. Biochemistry, 1993, 32, 8062-8067.	2.5	47
108	An Organic Semiconductor Organized into 3D DNA Arrays by "Bottomâ€up―Rational Design. Angewandte Chemie - International Edition, 2017, 56, 6445-6448.	13.8	47

#	Article	IF	CITATIONS
109	Tuning the Cavity Size and Chirality of Self-Assembling 3D DNA Crystals. Journal of the American Chemical Society, 2017, 139, 11254-11260.	13.7	47
110	Symmetric Holliday Junction Crossover Isomers. Journal of Molecular Biology, 1994, 238, 658-668.	4.2	46
111	RNA Used to Control a DNA Rotary Nanomachine. Nano Letters, 2006, 6, 2899-2903.	9.1	46
112	Self-Assembled DNA Crystals: The Impact on Resolution of 5â€2-Phosphates and the DNA Source. Nano Letters, 2013, 13, 793-797.	9.1	46
113	Charge splitters and charge transport junctions based on guanine quadruplexes. Nature Nanotechnology, 2018, 13, 316-321.	31.5	46
114	Organizing End-Site-Specific SWCNTs in Specific Loci Using DNA. Journal of the American Chemical Society, 2019, 141, 11923-11928.	13.7	45
115	Physical Models for Exploring DNA Topology. Journal of Biomolecular Structure and Dynamics, 1988, 5, 997-1004.	3.5	43
116	Self-Assembly of Irregular Graphs Whose Edges Are DNA Helix Axes. Journal of the American Chemical Society, 2004, 126, 6648-6657.	13.7	43
117	Cinnamate-based DNA photolithography. Nature Materials, 2013, 12, 747-753.	27.5	43
118	Making Engineered 3D DNA Crystals Robust. Journal of the American Chemical Society, 2019, 141, 15850-15855.	13.7	43
119	The construction of a trefoil knot from a DNA branched junction motif. Biopolymers, 1994, 34, 31-37.	2.4	42
120	Double cohesion in structural DNA nanotechnology. Organic and Biomolecular Chemistry, 2006, 4, 3414.	2.8	40
121	Automatic Molecular Weaving Prototyped by Using Singleâ€Stranded DNA. Angewandte Chemie - International Edition, 2011, 50, 4419-4422.	13.8	40
122	Designing Higher Resolution Self-Assembled 3D DNA Crystals via Strand Terminus Modifications. ACS Nano, 2019, 13, 7957-7965.	14.6	40
123	Exponential growth and selection in self-replicating materials from DNA origami rafts. Nature Materials, 2017, 16, 993-997.	27.5	39
124	Double-stranded DNA homology produces a physical signature. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12547-12552.	7.1	38
125	ASYNCHRONOUS SIGNAL PASSING FOR TILE SELF-ASSEMBLY: FUEL EFFICIENT COMPUTATION AND EFFICIENT ASSEMBLY OF SHAPES. International Journal of Foundations of Computer Science, 2014, 25, 459-488.	1.1	38
126	Design of Minimally Strained Nucleic Acid Nanotubes. Biophysical Journal, 2006, 90, 4546-4557.	0.5	37

#	Article	IF	CITATIONS
127	DNA enables nanoscale control of the structure of matter. Quarterly Reviews of Biophysics, 2005, 38, 363-371.	5.7	36
128	Blunt-ended DNA stacking interactions in a 3-helix motif. Chemical Communications, 2010, 46, 4905.	4.1	36
129	Direct Evidence for Holliday Junction Crossover Isomerization. Biochemistry, 1997, 36, 4240-4247.	2.5	35
130	Polygamous particles. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18731-18736.	7.1	34
131	Cleavage of Double-Crossover Molecules by T4 Endonuclease VII. Biochemistry, 1994, 33, 3896-3905.	2.5	33
132	PX DNA Triangle Oligomerized Using a Novel Three-Domain Motif. Nano Letters, 2008, 8, 317-322.	9.1	33
133	Tight Single-Stranded DNA Knots. Journal of Biomolecular Structure and Dynamics, 1993, 10, 853-863.	3.5	32
134	The absence of tertiary interactions in a selfâ€assembled DNA crystal structure. Journal of Molecular Recognition, 2012, 25, 234-237.	2.1	32
135	Stabilisation of self-assembled DNA crystals by triplex-directed photo-cross-linking. Chemical Communications, 2016, 52, 8014-8017.	4.1	32
136	The electrophoretic properties of a DNA cube and its substructure catenanes. Electrophoresis, 1991, 12, 607-611.	2.4	31
137	Sequence dependence of branch migratory minima. Journal of Molecular Biology, 1998, 282, 59-70.	4.2	31
138	Hierarchical self assembly of patterns from the Robinson tilings: DNA tile design in an enhanced Tile Assembly Model. Natural Computing, 2012, 11, 323-338.	3.0	31
139	Covalent Linkage of One-Dimensional DNA Arrays Bonded by Paranemic Cohesion. ACS Nano, 2015, 9, 10304-10312.	14.6	31
140	Introduction: Nucleic Acid Nanotechnology. Chemical Reviews, 2019, 119, 6271-6272.	47.7	31
141	Computation by Self-assembly of DNA Graphs. Genetic Programming and Evolvable Machines, 2003, 4, 123-137.	2.2	30
142	Three-dimensional molecular and nanoparticle crystallization by DNA nanotechnology. MRS Bulletin, 2017, 42, 904-912.	3.5	30
143	Challenges and applications for self-assembled DNA nanostructures?. Lecture Notes in Computer Science, 2001, , 173-198.	1.3	30
144	Multivalent, multiflavored droplets by design. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9086-9091.	7.1	29

#	Article	IF	CITATIONS
145	Nanoscale Structure and Elasticity of Pillared DNA Nanotubes. ACS Nano, 2016, 10, 7780-7791.	14.6	28
146	Prototyping Nanorod Control: A DNA Double Helix Sheathed within a DNA Six-Helix Bundle. Chemistry and Biology, 2009, 16, 862-867.	6.0	27
147	A Signalâ€Passing DNAâ€Strandâ€Exchange Mechanism for Active Selfâ€Assembly of DNA Nanostructures. Angewandte Chemie - International Edition, 2015, 54, 5939-5942.	13.8	27
148	Asynchronous Signal Passing for Tile Self-assembly: Fuel Efficient Computation and Efficient Assembly of Shapes. Lecture Notes in Computer Science, 2013, , 174-185.	1.3	27
149	Topological Linkage of DNA Tiles Bonded by Paranemic Cohesion. ACS Nano, 2015, 9, 10296-10303.	14.6	26
150	Structural Domains of DNA Mesojunctions. Biochemistry, 1995, 34, 920-929.	2.5	25
151	Construction of a DNA nano-object directly demonstrates computation. BioSystems, 2009, 98, 80-84.	2.0	25
152	Parallel Helical Domains in DNA Branched Junctions Containing 5â€~,5â€~ and 3â€~,3â€~ Linkages. Biochemistry, 1999, 38, 2832-2841.	2.5	23
153	DNA nanotechnology. Materials Today, 2003, 6, 24-29.	14.2	23
154	Morphology Change of Calcium Carbonate in the Presence of Polynucleotides. Crystal Growth and Design, 2008, 8, 1200-1202.	3.0	23
155	A topological rubber glove obtained from a synthetic single-stranded DNA molecule. Journal of the Chemical Society Chemical Communications, 1995, , 2249.	2.0	22
156	Kinetics of DNA-coated sticky particles. Physical Review E, 2013, 88, 022304.	2.1	22
157	Interactive design and manipulation of macro-molecular architecture utilizing nucleic acid junctions. Journal of Molecular Graphics, 1985, 3, 34-39.	1.1	21
158	A Simple DNA-Based Translation System. Nano Letters, 2007, 7, 480-483.	9.1	21
159	Modulating Selfâ€Assembly of DNA Crystals with Rationally Designed Agents. Angewandte Chemie - International Edition, 2018, 57, 16529-16532.	13.8	21
160	Powering â‰^50 Âμm Motion by a Molecular Event in DNA Crystals. Advanced Materials, 2022, 34, e2200441.	21.0	21
161	DNA nanoconstructions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1994, 12, 1895-1903.	2.1	20
162	Direct Evidence for Spontaneous Branch Migration in Antiparallel DNA Holliday Junctions. Biochemistry, 2000, 39, 11514-11522.	2.5	20

#	Article	IF	CITATIONS
163	Reciprocal DNA Nanomechanical Devices Controlled by the Same Set Strands. Nano Letters, 2009, 9, 2641-2647.	9.1	20
164	3D DNA Crystals and Nanotechnology. Crystals, 2016, 6, 97.	2.2	20
165	Self-Assembly of 3D DNA Crystals Containing a Torsionally Stressed Component. Cell Chemical Biology, 2017, 24, 1401-1406.e2.	5.2	20
166	Construction of a DNA Origami Based Molecular Electro-optical Modulator. Nano Letters, 2018, 18, 2112-2115.	9.1	19
167	Reconfigurable Twoâ€Dimensional DNA Lattices: Static and Dynamic Angle Control. Angewandte Chemie - International Edition, 2021, 60, 25781-25786.	13.8	19
168	Coding and geometrical shapes in nanostructures: A fractal DNA-assembly. Natural Computing, 2003, 2, 133-151.	3.0	18
169	Self-assembling DNA graphs. Natural Computing, 2003, 2, 427-438.	3.0	18
170	Atomic structures of RNA nanotubes and their comparison with DNA nanotubes. Nanoscale, 2019, 11, 14863-14878.	5.6	18
171	Programming DNA Self-Assembly by Geometry. Journal of the American Chemical Society, 2022, 144, 8741-8745.	13.7	18
172	3D Fractal DNA Assembly from Coding, Geometry and Protection. Natural Computing, 2004, 3, 235-252.	3.0	16
173	Thermodynamic Analysis of Nylon Nucleic Acids. ChemBioChem, 2008, 9, 1641-1648.	2.6	16
174	Litters of self-replicating origami cross-tiles. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1952-1957.	7.1	16
175	3D Hexagonal Arrangement of DNA Tensegrity Triangles. ACS Nano, 2021, 15, 16788-16793.	14.6	16
176	A route to fractal DNA-assembly. Natural Computing, 2002, 1, 469-480.	3.0	15
177	DNA Nanotechnology: From the Pub to Information-Based Chemistry. Methods in Molecular Biology, 2018, 1811, 1-9.	0.9	15
178	Exciton Delocalization in a DNA-Templated Organic Semiconductor Dimer Assembly. ACS Nano, 2022, 16, 1301-1307.	14.6	15
179	Title is missing!. Natural Computing, 2002, 1, 53-84.	3.0	14
180	2′,2′-Ligation demonstrates the thermal dependence of DNA-directed positional control. Tetrahedron, 2008, 64, 8417-8422.	1.9	14

#	Article	IF	CITATIONS
181	Metallic Nanoparticles Used to Estimate the Structural Integrity of DNA Motifs. Biophysical Journal, 2008, 95, 3340-3348.	0.5	14
182	On existence of reporter strands in DNA-based graph structures. Theoretical Computer Science, 2009, 410, 1448-1460.	0.9	14
183	Site-specific inter-strand cross-links of DNA duplexes. Chemical Science, 2013, 4, 1319.	7.4	14
184	Microchemomechanical devices using DNA hybridization. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
185	No braiding of holliday junctions in positively supercoiled DNA molecules 1 1Edited by I. Tinoco. Journal of Molecular Biology, 1999, 294, 683-699.	4.2	13
186	Two Dimensions and Two States in DNA Nanotechnology. Journal of Biomolecular Structure and Dynamics, 2000, 17, 253-262.	3.5	13
187	Edge-sharing motifs in structural DNA nanotechnology. Journal of Supramolecular Chemistry, 2001, 1, 229-237.	0.4	13
188	Fluorescence and Energy Transfer in Dye-Labeled DNA Crystals. Journal of Physical Chemistry B, 2016, 120, 12287-12292.	2.6	13
189	Molecular Tiling and DNA Self-assembly. Lecture Notes in Computer Science, 2003, , 61-83.	1.3	13
190	Templated synthesis of nylon nucleic acids and characterization by nuclease digestion. Chemical Science, 2012, 3, 1930.	7.4	12
191	Computing by molecular self-assembly. Interface Focus, 2012, 2, 504-511.	3.0	12
192	On the chemical synthesis of new topological structures. Journal of Mathematical Chemistry, 2012, 50, 220-232.	1.5	12
193	The challenge of structural control on the nanoscale: bottom-up self-assembly of nucleic acids in 3D. International Journal of Nanotechnology, 2005, 2, 348.	0.2	11
194	THz Characterization of DNA Four-Way Junction and Its Components. IEEE Nanotechnology Magazine, 2010, 9, 610-617.	2.0	11
195	Synthesising topological links. Journal of Mathematical Chemistry, 2015, 53, 183-199.	1.5	11
196	An Organic Semiconductor Organized into 3D DNA Arrays by "Bottomâ€up―Rational Design. Angewandte Chemie, 2017, 129, 6545-6548.	2.0	10
197	REACTION OF N3-BENZOYL-3â€ ² ,5â€ ² -O-(DI-TERT-BUTYLSILANEDIYL)URIDINE WITH HINDERED ELECTROPHILES: INTERMOLECULAR N3To 2â€ ² -OPROTECTING GROUP TRANSFER. Nucleosides, Nucleotides and Nucleic Acids, 2002, 21, 723-735.	1.1	9
198	Facilitation of DNA self-assembly by relieving the torsional strains between building blocks. Organic and Biomolecular Chemistry, 2017, 15, 465-469.	2.8	9

#	Article	IF	CITATIONS
199	Design tools for reporter strands and DNA origami scaffold strands. Theoretical Computer Science, 2017, 671, 69-78.	0.9	9
200	Mutations in artificial self-replicating tiles: A step toward Darwinian evolution. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
201	Parallel Symmetric Immobile DNA Junctions as Substrates forE. coliRuvC Holliday Junction Resolvaseâ€. Biochemistry, 2002, 41, 10985-10993.	2.5	8
202	Key Experimental Approaches in DNA Nanotechnology. Current Protocols in Nucleic Acid Chemistry, 2002, 9, Unit 12.1.	0.5	8
203	A DNA-Based Nanomechanical Device Used To Characterize the Distortion of DNA by Apo-SoxR Protein. Biochemistry, 2012, 51, 937-943.	2.5	8
204	Templated DNA ligation with thiol chemistry. Organic and Biomolecular Chemistry, 2014, 12, 8823-8827.	2.8	8
205	Postâ€Assembly Stabilization of Rationally Designed DNA Crystals. Angewandte Chemie, 2015, 127, 10074-10077.	2.0	8
206	Orienting an Organic Semiconductor into DNA 3D Arrays by Covalent Bonds. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
207	Regulation of 2D DNA Nanostructures by the Coupling of Intrinsic Tile Curvature and Arm Twist. Journal of the American Chemical Society, 2022, 144, 6759-6769.	13.7	8
208	5′-Phosphorylation Strengthens Sticky-End Cohesions. Journal of the American Chemical Society, 2021, 143, 14987-14991.	13.7	7
209	2',2'-Ligation Demonstrates the Thermal Dependence of DNA-Directed Positional Control. Tetrahedron, 2008, 64, 8417-8422.	1.9	7
210	Multiplying with DNA. Natural Computing, 2006, 5, 427-441.	3.0	6
211	Molecular-Dynamics Simulations of Insertion of Chemically Modified DNA Nanostructures into a Water-Chloroform Interface. Biophysical Journal, 2008, 95, 1099-1107.	0.5	6
212	The PX Motif of DNA Binds Specifically to <i>Escherichia coli</i> DNA Polymerase I. Biochemistry, 2019, 58, 575-581.	2.5	6
213	Mix and match—a versatile equilibrium approach for hybrid colloidal synthesis. Soft Matter, 2020, 16, 4358-4365.	2.7	6
214	Transducers with Programmable Input by DNA Self-assembly. Lecture Notes in Computer Science, 2003, , 219-240.	1.3	6
215	DNA Nanostructures for Mechanics and Computing: Nonlinear Thinking with Life's Central Molecule. , 2005, , 308-318.		5
216	Transducer generated arrays of robotic nano-arms. Natural Computing, 2010, 9, 437-455.	3.0	5

#	Article	IF	CITATIONS
217	The unusual and dynamic character of PX-DNA. Nucleic Acids Research, 2015, 43, 7201-7206.	14.5	5
218	Modulating Selfâ€Assembly of DNA Crystals with Rationally Designed Agents. Angewandte Chemie, 2018, 130, 16767-16770.	2.0	5
219	Reconfigurable Twoâ€Dimensional DNA Lattices: Static and Dynamic Angle Control. Angewandte Chemie, 2021, 133, 25985-25990.	2.0	5
220	Nanoengineering with DNA. Materials Research Society Symposia Proceedings, 1992, 292, 123.	0.1	4
221	Art as a Stimulus for Structural DNA Nanotechnology. Leonardo, 2014, 47, 142-149.	0.3	4
222	Time lapse microscopy of temperature control during self-assembly of 3D DNA crystals. Journal of Crystal Growth, 2017, 476, 1-5.	1.5	4
223	DNA Nanotechnology. Nature Biotechnology, 1999, 17, 11-11.	17.5	3
224	Design formalism for DNA self-assembly of polyhedral skeletons using rigid tiles. Journal of Mathematical Chemistry, 2018, 56, 1365-1392.	1.5	3
225	Chemical Synthesis of Nanostructures. Materials Research Society Symposia Proceedings, 1993, 330, 45.	0.1	2
226	The Control of Dna Structure and Topology: An Overview. Materials Research Society Symposia Proceedings, 1994, 351, 57.	0.1	2
227	DNA: beyond the double helix. Macromolecular Symposia, 2003, 201, 237-244.	0.7	2
228	Forum on Translational DNA Nanotechnology. ACS Applied Materials & Interfaces, 2019, 11, 13833-13834.	8.0	2
229	Orienting an Organic Semiconductor into DNA 3D Arrays by Covalent Bonds. Angewandte Chemie, 2022, 134, .	2.0	2
230	Experiments in structural DNA nanotechnology: arrays and devices. , 2005, 5592, 71.		1
231	Linear birefringence magnitude of artificial self-assembled DNA crystals. Optical Materials Express, 2011, 1, 936.	3.0	1
232	Designed 3D DNA Crystals. Methods in Molecular Biology, 2017, 1500, 3-10.	0.9	1
233	Torsional control of doubleâ€stranded DNA branch migration. Biopolymers, 1998, 45, 69-83.	2.4	1
234	Nanostrukturen und Topologien von NucleinsĤren. Angewandte Chemie, 1998, 110, 3408-3428.	2.0	1

#	Article	IF	CITATIONS
235	Nicks, Nodes, and New Motifs for DNA Nanotechnology. , 2000, , 177-197.		1
236	Single-stranded DNA topology and motif design. , 0, , 44-63.		0
237	DNA nanomechanical devices. , 0, , 130-149.		0
238	Computing with DNA. , 0, , 198-212.		0
239	Not just plain vanilla DNA nanotechnology: other pairings, other backbones. , 0, , 213-230.		0
240	DNA nanotechnology organizing other materials. , 0, , 231-247.		0
241	The eternal molecule. , 2003, , 82-139.		0
242	The Perils of Polynucleotides Revisited. Natural Computing Series, 2009, , 205-214.	2.2	0
243	Finite State Automata by DNA Self-assembly. Communications in Computer and Information Science, 2011, , 1-4.	0.5	0
244	DNA: Not Merely the Secret of Life. Journal of Cosmetic Science, 2010, 61, 62-63.	0.1	0