Cara M Hildreth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/702767/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The subfornical organ drives hypertension in polycystic kidney disease via the hypothalamic paraventricular nucleus. Cardiovascular Research, 2022, 118, 1138-1149.	1.8	0
2	Do catecholaminergic TrkC DRG neurons represent a class of cardiovascular enteroceptor?. Cell Reports, 2022, 38, 110082.	2.9	1
3	Upregulated Angiotensin la Receptors in the Hypothalamic Paraventricular Nucleus Sensitize Neuroendocrine Vasopressin Release and Blood Pressure in a Rodent Model of Polycystic Kidney Disease. Neuroendocrinology, 2022, 112, 1200-1213.	1.2	3
4	Augmented Respiratory–Sympathetic Coupling and Hemodynamic Response to Acute Mild Hypoxia in Female Rodents With Chronic Kidney Disease. Frontiers in Physiology, 2021, 12, 623599.	1.3	1
5	Relationship between sex and cardiovascular mortality in chronic kidney disease: A systematic review and meta-analysis. PLoS ONE, 2021, 16, e0254554.	1.1	13
6	Renal denervation does not affect hypertension or the renin-angiotensin system in a rodent model of juvenile-onset polycystic kidney disease: clinical implications. Scientific Reports, 2021, 11, 14286.	1.6	6
7	Neurons in the Intermediate Reticular Nucleus Coordinate Postinspiratory Activity, Swallowing, and Respiratory-Sympathetic Coupling in the Rat. Journal of Neuroscience, 2019, 39, 9757-9766.	1.7	46
8	Respiratory sympathetic modulation is augmented in chronic kidney disease. Respiratory Physiology and Neurobiology, 2019, 262, 57-66.	0.7	5
9	Increased excitatory regulation of the hypothalamic paraventricular nucleus and circulating vasopressin results in the hypertension observed in polycystic kidney disease. Journal of Hypertension, 2019, 37, 109-115.	0.3	3
10	Effect of anaesthetic and choice of neuromuscular blocker on vagal control of heart rate under laboratory animal experimental conditions. Laboratory Animals, 2018, 52, 280-291.	0.5	4
11	Osmoregulation in Polycystic Kidney Disease: Relationship with Cystogenesis and Hypertension. Annals of Nutrition and Metabolism, 2018, 72, 33-38.	1.0	5
12	Chronic kidney disease impairs renal nerve and haemodynamic reflex responses to vagal afferent input through a central mechanism. Autonomic Neuroscience: Basic and Clinical, 2017, 204, 65-73.	1.4	4
13	Increased arterial stiffness does not respond to renal denervation in an animal model of secondary hypertension. , 2017, 2017, 258-261.		1
14	Tonically Active cAMP-Dependent Signaling in the Ventrolateral Medulla Regulates Sympathetic and Cardiac Vagal Outflows. Journal of Pharmacology and Experimental Therapeutics, 2016, 356, 424-433.	1.3	7
15	The effect of losartan on differential reflex control of sympathetic nerve activity in chronic kidney disease. Journal of Hypertension, 2015, 33, 1249-1260.	0.3	23
16	Abnormal central control underlies impaired baroreflex control of heart rate and sympathetic nerve activity in female Lewis polycystic kidney rats. Journal of Hypertension, 2015, 33, 1418-1428.	0.3	20
17	Direct conscious telemetry recordings demonstrate increased renal sympathetic nerve activity in rats with chronic kidney disease. Frontiers in Physiology, 2015, 6, 218.	1.3	20
18	Differential Contribution of Afferent and Central Pathways to the Development of Baroreflex Dysfunction in Chronic Kidney Disease. Hypertension, 2014, 63, 804-810.	1.3	45

CARA M HILDRETH

#	Article	IF	CITATIONS
19	Sympathetic overactivity prevails over the vascular amplifier phenomena in a chronic kidney disease rat model of hypertension. Physiological Reports, 2014, 2, e12205.	0.7	14
20	Insight into Autonomic Nervous System Control of Heart Rate in the Rat Using Analysis of Heart Rate Variability and Baroreflex Sensitivity. Neuromethods, 2013, , 203-223.	0.2	7
21	Temporal development of baroreceptor dysfunction in a rodent model of chronic kidney disease. Clinical and Experimental Pharmacology and Physiology, 2013, 40, 458-465.	0.9	18
22	Prognostic Indicators of Cardiovascular Risk in Renal Disease. Frontiers in Physiology, 2012, 2, 121.	1.3	23
23	Aortic stiffness is associated with vascular calcification and remodeling in a chronic kidney disease rat model. American Journal of Physiology - Renal Physiology, 2011, 300, F1431-F1436.	1.3	61
24	Angiotensin-converting enzyme inhibitor limits pulse-wave velocity and aortic calcification in a rat model of cystic renal disease. American Journal of Physiology - Renal Physiology, 2011, 301, F959-F966.	1.3	30
25	Role of ionotropic GABA, glutamate and glycine receptors in the tonic and reflex control of cardiac vagal outflow in the rat. BMC Neuroscience, 2010, 11, 128.	0.8	15
26	Cardiovascular autonomic dysfunction in a novel rodent model of polycystic kidney disease. Autonomic Neuroscience: Basic and Clinical, 2010, 152, 60-66.	1.4	20
27	METABOTROPIC NEUROTRANSMISSION AND INTEGRATION OF SYMPATHETIC NERVE ACTIVITY BY THE ROSTRAL VENTROLATERAL MEDULLA IN THE RAT. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 508-511.	0.9	21
28	CONTROL OF SYMPATHETIC, RESPIRATORY AND SOMATOMOTOR OUTFLOW BY AN INTRASPINAL PATTERN GENERATOR. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 447-453.	0.9	14
29	Impaired serotonergic regulation of heart rate may underlie reduced baroreflex sensitivity in an animal model of depression. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H474-H480.	1.5	30