Adrian Boyce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7027565/publications.pdf

Version: 2024-02-01

50276 102487 7,697 305 46 66 citations h-index g-index papers 325 325 325 5923 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Geologic Evolution of the Escondida Area, Northern Chile: A Model for Spatial and Temporal Localization of Porphyry Cu Mineralization. Economic Geology, 2001, 96, 271-305.	3.8	201
2	A Devonian auriferous hot spring system, Rhynie, Scotland. Journal of the Geological Society, 1995, 152, 229-250.	2.1	143
3	Ore-Forming Processes in Irish-Type Carbonate-Hosted Zn-Pb Deposits: Evidencefrom Mineralogy, Chemistry, and Isotopic Composition of Sulfides at the LisheenMine. Economic Geology, 2005, 100, 63-86.	3.8	124
4	Zn, Fe and S isotope fractionation in a large hydrothermal system. Geochimica Et Cosmochimica Acta, 2012, 88, 183-198.	3.9	111
5	A stable isotope study of microbial dolomite formation in the Coorong Region, South Australia. Chemical Geology, 2007, 244, 155-174.	3.3	107
6	Formation of fossil hydrothermal chimneys and mounds from Silvermines, Ireland. Nature, 1983, 306, 545-550.	27.8	106
7	Pond-Derived Organic Carbon Driving Changes in Arsenic Hazard Found in Asian Groundwaters. Environmental Science & Environment	10.0	106
8	40Ar/39Ar dating of hydrothermal activity, biota and gold mineralization in the Rhynie hot-spring system, Aberdeenshire, Scotland. Geochimica Et Cosmochimica Acta, 2011, 75, 555-569.	3.9	100
9	Early oxygenation of the terrestrial environment during the Mesoproterozoic. Nature, 2010, 468, 290-293.	27.8	97
10	Origin of the Nchanga copper–cobalt deposits of the Zambian Copperbelt. Mineralium Deposita, 2006, 40, 617-638.	4.1	92
11	Constraints on the Origins of Fluids Forming Irish Zn-Pb-Ba Deposits: Evidence from the Composition of Fluid Inclusions. Economic Geology, 2002, 97, 471-480.	3.8	90
12	Incursion of meteoric waters into the ductile regime in an active orogen. Earth and Planetary Science Letters, 2014, 399, 1-13.	4.4	90
13	Tracing organic matter composition and distribution and its role on arsenic release in shallow Cambodian groundwaters. Geochimica Et Cosmochimica Acta, 2016, 178, 160-177.	3.9	90
14	Evolution and paragenetic context of low ÎD hydrothermal fluids from the Panasqueira W-Sn deposit, Portugal: new evidence from microthermometric, stable isotope, noble gas and halogen analyses of primary fluid inclusions. Geochimica Et Cosmochimica Acta, 2000, 64, 3357-3371.	3.9	89
15	Hydrogeochemical and stable isotope data of groundwater of a multi-aquifer system: Northern Gafsa basin – Central Tunisia. Journal of African Earth Sciences, 2016, 114, 174-191.	2.0	89
16	A Fluid Inclusion and Stable Isotope Study at the Loulo Mining District, Mali, West Africa: Implications for Multifluid Sources in the Generation of Orogenic Gold Deposits. Economic Geology, 2013, 108, 229-257.	3.8	88
17	Ore depositional process in the Navan Zn-Pb deposit, Ireland. Economic Geology, 1998, 93, 535-563.	3.8	86
18	Discovery of a 25-cm asteroid clast in the giant Morokweng impact crater, South Africa. Nature, 2006, 441, 203-206.	27.8	84

#	Article	IF	Citations
19	Fault-controlled dolomitization in a rift basin. Geology, 2017, 45, 219-222.	4.4	77
20	Origin of the copper-cobalt deposits of the Zambian Copperbelt: An epigenetic view from Nchanga. Geology, 2003, 31, 497.	4.4	75
21	100th Anniversary Special Paper: * > On Hydrothermal Convection Systems and the Emergence of Life. Economic Geology, 2005, 100, 419-438.	3.8	75
22	Oxygen isotope systematics of the Banda Arc: low \hat{l} 18O despite involvement of subducted continental material in magma genesis. Geochimica Et Cosmochimica Acta, 2001, 65, 589-609.	3.9	74
23	Genesis of sediment-hosted stratiform copper–cobalt mineralization at Luiswishi and Kamoto, Katanga Copperbelt (Democratic Republic of Congo). Mineralium Deposita, 2010, 45, 735-763.	4.1	74
24	Sulfur Isotope Variations within the Platreef Ni-Cu-PGE Deposit: Genetic Implications for the Origin of Sulfide Mineralization. Economic Geology, 2007, 102, 1091-1110.	3.8	69
25	A new sulphur isotopic study of some Iberian Pyrite Belt deposits: evidence of a textural control on sulphur isotope composition. Mineralium Deposita, 1998, 34, 4-18.	4.1	67
26	The sulfur isotope evolution of magmatic-hydrothermal fluids: insights into ore-forming processes. Geochimica Et Cosmochimica Acta, 2020, 288, 176-198.	3.9	66
27	The geochemistry of fluids from an active shallow submarine hydrothermal system: Milos island, Hellenic Volcanic Arc. Journal of Volcanology and Geothermal Research, 2005, 148, 130-151.	2.1	65
28	Stable Isotope Constraints on Ore Formation at the San Rafael Tin-Copper Deposit, Southeast Peru. Economic Geology, 2009, 104, 223-248.	3.8	62
29	Growth controls in colloform pyrite. American Mineralogist, 2009, 94, 415-429.	1.9	62
30	Gold remobilization by low-temperature brines; evidence from the Curraghinalt gold deposit, Northern Ireland. Economic Geology, 1999, 94, 289-296.	3.8	58
31	Laser combustion analysis of Î'34S of sulfosalt minerals. Geochimica Et Cosmochimica Acta, 2002, 66, 2855-2863.	3.9	58
32	Carbonate alteration of ophiolitic rocks in the Arabian–Nubian Shield of Egypt: sources and compositions of the carbonating fluid and implications for the formation of Au deposits. International Geology Review, 2017, 59, 391-419.	2.1	57
33	Anhydrite pseudomorphs and the origin of stratiform Cu–Co ores in the Katangan Copperbelt (Democratic Republic of Congo). Mineralium Deposita, 2008, 43, 575-589.	4.1	56
34	On the growth of colloform textures: a case study of sphalerite from the Galmoy ore body, Ireland. Journal of the Geological Society, 2009, 166, 563-582.	2.1	56
35	BACTERIA WERE RESPONSIBLE FOR THE MAGNITUDE OF THE WORLD-CLASS HYDROTHERMAL BASE METAL SULFIDE OREBODY AT NAVAN, IRELAND. Economic Geology, 2001, 96, 885-890.	3.8	55
36	Infiltration of basinal fluids into high-grade basement, South Norway: sources and behaviour of waters and brines. Geofluids, 2003, 3, 33-48.	0.7	53

#	Article	IF	CITATIONS
37	The application of S isotopes and S/Se ratios in determining ore-forming processes of magmatic Ni–Cu–PGE sulfide deposits: A cautionary case study from the northern Bushveld Complex. Ore Geology Reviews, 2016, 73, 148-174.	2.7	53
38	Chemical and thermal constraints on focussed fluid flow in the lower oceanic crust. Numerische Mathematik, 2006, 306, 389-427.	1.4	52
39	Fluid transfers at a basement/cover interface. Chemical Geology, 2002, 192, 121-140.	3.3	51
40	Intracratonic crustal seawater circulation and the genesis of subseafloor zinc-lead mineralization in the Irish orefield. Geology, 2005, 33, 805.	4.4	50
41	Variability in fluid sources in the fluorite deposits from Asturias (N Spain): Further evidences from REE, radiogenic (Sr, Sm, Nd) and stable (S, C, O) isotope data. Ore Geology Reviews, 2010, 37, 87-100.	2.7	50
42	The age of the Mesoproterozoic Stoer Group sedimentary and impact deposits, NW Scotland. Journal of the Geological Society, 2011, 168, 349-358.	2.1	50
43	The role of crustal and mantle sources in the genesis of granitoids of the Antarctic Peninsula and adjacent crustal blocks. Journal of the Geological Society, 2001, 158, 855-867.	2.1	50
44	Timing of Interplay between Hydrothermal and Surface Fluids in the Navan Zn + Pb Orebody, Ireland: Evidence from Metal Distribution Trends, Mineral Textures, and Â34S Analyses. Economic Geology, 2002, 97, 73-91.	3.8	48
45	Evaluating new faultâ€controlled hydrothermal dolomitization models: Insights from the Cambrian Dolomite, Western Canadian Sedimentary Basin. Sedimentology, 2020, 67, 2945-2973.	3.1	48
46	100th Anniversary Special Paper: > On Hydrothermal Convection Systems and the Emergence of Life. Economic Geology, 2005, 100, 419-438.	3.8	47
47	ISOTOPIC DISCRIMINANTS BETWEEN LATE BRONZE AGE GLASSES FROM EGYPT AND THE NEAR EAST. Archaeometry, 2010, 52, 380-388.	1.3	47
48	Minor Elements in Layered Sphalerite as a Record of Fluid Origin, Mixing, and Crystallization in the Navan Zn-Pb Ore Deposit, Ireland. Economic Geology, 2014, 109, 1513-1528.	3.8	46
49	Fluid inclusion and stable isotope constraints on the genesis of the Cligga Head Sn-W deposit, S.W. England. European Journal of Mineralogy, 1996, 8, 961-974.	1.3	46
50	Assimilation of sediments embedded in the oceanic arc crust: myth or reality?. Earth and Planetary Science Letters, 2014, 395, 51-60.	4.4	45
51	Late Cretaceous (Maastrichtian) shallow water hydrocarbon seeps from Snow Hill and Seymour Islands, James Ross Basin, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 418, 213-228.	2.3	45
52	Multiple metal sources in the glaciomarine facies of the Neoproterozoic Jacadigo iron formation in the "Santa Cruz depositâ€, Corumbá, Brazil. Precambrian Research, 2016, 275, 369-393.	2.7	45
53	Genesis of the vein-type tungsten mineralization at Nyakabingo (Rwanda) in the Karagwe–Ankole belt, Central Africa. Mineralium Deposita, 2016, 51, 283-307.	4.1	45

#	Article	IF	Citations
55	The development of volcanic hosted massive sulfide and barite–gold orebodies on Wetar Island, Indonesia. Mineralium Deposita, 2005, 40, 76-99.	4.1	44
56	Late anhydrite cements mark basin inversion: isotopic and formation water evidence, Rotliegend Sandstone, North Sea. Marine and Petroleum Geology, 1994, 11, 46-54.	3.3	43
57	Source and evolution of ore-forming hydrothermal fluids in the northern Iberian Pyrite Belt massive sulphide deposits (SW Spain): evidence from fluid inclusions and stable isotopes. Mineralium Deposita, 2003, 38, 519-537.	4.1	43
58	Pyrite metamorphism in the devonian hunsruck slate of Germany: Insights from laser microprobe sulfur isotope analysis and thermodynamic modeling. Numerische Mathematik, 2006, 306, 525-552.	1.4	43
59	Fluxing of mantle carbon as a physical agent for metallogenic fertilization of the crust. Nature Communications, 2020, 11, 4342.	12.8	43
60	Exhumation of an active magmatic–hydrothermal system in a resurgent caldera environment: the example of Ischia (Italy). Journal of the Geological Society, 2009, 166, 1061-1073.	2.1	41
61	Hydrochemistry and stable isotopes (\hat{l} 18 O and \hat{l} 2 H) tools applied to the study of karst aquifers in southern mediterranean basin (Teboursouk area, NW Tunisia). Journal of African Earth Sciences, 2018, 137, 208-217.	2.0	41
62	Origin and evolution of fault-controlled hydrothermal dolomitization fronts: A new insight. Earth and Planetary Science Letters, 2020, 541, 116291.	4.4	41
63	Hydrothermal pyrite chimneys from the Ballynoe baryte deposit, Silvermines, County Tipperary, Ireland. Mineralium Deposita, 1981, 16, 309.	4.1	40
64	Contrasting evolution of hydrothermal fluids in the PACMANUS system, Manus Basin: The Sr and S isotope evidence. Geology, 2003, 31, 805.	4.4	40
65	Sustainability of thermal energy production at the flooded mine workings of the former Caphouse Colliery, Yorkshire, United Kingdom. International Journal of Coal Geology, 2016, 164, 85-91.	5.0	40
66	Tellurium, magmatic fluids and orogenic gold: An early magmatic fluid pulse at Cononish gold deposit, Scotland. Ore Geology Reviews, 2018, 102, 894-905.	2.7	40
67	Evolution of Cu–Co mineralizing fluids at Nkana Mine, Central African Copperbelt, Zambia. Journal of African Earth Sciences, 2010, 58, 457-474.	2.0	39
68	Sulfur isotope signatures for rapid colonization of an impact crater by thermophilic microbes. Geology, 2010, 38, 271-274.	4.4	39
69	Mixing of magmatic-hydrothermal and metamorphic fluids and the origin of peribatholitic Sn vein-type deposits in Rwanda. Ore Geology Reviews, 2018, 101, 481-501.	2.7	39
70	Genetic studies of red bed mineralization in the Triassic of the Cheshire Basin, northwest England. Journal of the Geological Society, 1989, 146, 685-699.	2.1	38
71	The evolution of magma during continental rifting: New constraints from the isotopic and trace element signatures of silicic magmas from Ethiopian volcanoes. Earth and Planetary Science Letters, 2018, 489, 203-218.	4.4	35
72	Clumped-isotope palaeothermometry and LA-ICP-MS U–Pb dating of lava-pile hydrothermal calcite veins. Contributions To Mineralogy and Petrology, 2019, 174, 1.	3.1	34

#	Article	IF	CITATIONS
73	The role of prokaryotes in supergene alteration of submarine hydrothermal sulfides. Earth and Planetary Science Letters, 2006, 244, 170-185.	4.4	33
74	Aqueous alteration of the Martian meteorite Northwest Africa 817: Probing fluid–rock interaction at the nakhlite launch site. Meteoritics and Planetary Science, 2018, 53, 2395-2412.	1.6	33
75	Preliminary sulphur isotope data of diagenetic and vein sulphides in the Lower Palaeozoic strata of Ireland and southern Scotland: implications for Zn + Pb + Ba mineralization. Journal of the Geological Society, 1989, 146, 715-720.	2.1	32
76	Hydrochemistry and stable isotopes as tools for understanding the sustainability of minewater geothermal energy production from a †standing column†heat pump system: Markham Colliery, Bolsover, Derbyshire, UK. International Journal of Coal Geology, 2016, 165, 223-230.	5.0	32
77	The Gounkoto Au deposit, West Africa: Constraints on ore genesis and volatile sources from petrological, fluid inclusion and stable isotope data. Ore Geology Reviews, 2016, 78, 606-622.	2.7	32
78	Retrogression by deep infiltration of meteoric fluids into thrust zones during late-orogenic rapid unroofing. Journal of Metamorphic Geology, 2000, 18, 307-318	3.4	31
79	Fluids in early stage hydrothermal alteration of high-sulfidation epithermal systems: A view from the Vulcano active hydrothermal system (Aeolian Island, Italy). Journal of Volcanology and Geothermal Research, 2007, 166, 76-90.	2.1	31
80	Carbonate cements in Miller field of the UK North Sea: a natural analog for mineral trapping in CO2 geological storage. Environmental Earth Sciences, 2011, 62, 507-517.	2.7	31
81	Delineating sources of groundwater recharge in an arsenic-affected Holocene aquifer in Cambodia using stable isotope-based mixing models. Journal of Hydrology, 2018, 557, 321-334.	5.4	31
82	A NEW FOSSIL VENT BIOTA IN THE BALLYNOE BARITE DEPOSIT, SILVERMINES, IRELAND: EVIDENCE FOR INTRACRATONIC SEA-FLOOR HYDROTHERMAL ACTIVITY ABOUT 352 Ma. Economic Geology, 2003, 98, 649-656.	3.8	31
83	Laser microprobe stable isotope measurements on geological materials: Some experimental considerations (with special reference tol´34S in sulphides). Chemical Geology: Isotope Geoscience Section, 1992, 101, 53-61.	0.6	30
84	Gold-Silver vein mineralization at Tyndrum, Scotland. Mineralogy and Petrology, 1988, 38, 61-76.	1.1	29
85	Deep hydrothermal circulation in a granite intrusion beneath Larderello geothermal area (Italy): constraints from mineralogy, fluid inclusions and stable isotopes. Journal of Volcanology and Geothermal Research, 2003, 126, 243-262.	2.1	29
86	Laser microprobe sulphur isotope analysis of arsenopyrite: experimental calibration and application to the Boliden Au–Cu–As massive sulphide deposit. Ore Geology Reviews, 2004, 25, 311-325.	2.7	29
87	The Massawa gold deposit, Eastern Senegal, West Africa: an orogenic gold deposit sourced from magmatically derived fluids?. Geological Society Special Publication, 2015, 393, 135-160.	1.3	29
88	Geological setting and timing of the world-class Sn, Nb–Ta and Li mineralization of Manono-Kitotolo (Katanga, Democratic Republic of Congo). Ore Geology Reviews, 2016, 72, 373-390.	2.7	29
89	Effects of magmatic volatile influx in mafic VMS hydrothermal systems: Evidence from the Troodos ophiolite, Cyprus. Chemical Geology, 2020, 531, 119325.	3.3	29
90	On the occurrence and wider implications of anomalously low ÎD fluids in quartz veins, South Cornwall, England. Chemical Geology, 1999, 160, 161-173.	3.3	28

#	Article	IF	Citations
91	High arsenic concentrations and enriched sulfur and oxygen isotopes in a fractured-bedrock ground-water system. Chemical Geology, 2007, 242, 385-399.	3.3	28
92	High selenium in the Carboniferous Coal Measures of Northumberland, North East England. International Journal of Coal Geology, 2018, 195, 61-74.	5.0	28
93	Petrographic, fluid inclusion and isotopic study of the Dikulushi Cu–Ag deposit, Katanga (D.R.C.): implications for exploration. Mineralium Deposita, 2009, 44, 505-522.	4.1	27
94	The nature and genesis of marginal Cu–PGE–Au sulphide mineralisation in Paleogene Macrodykes of the Kangerlussuaq region, East Greenland. Mineralium Deposita, 2012, 47, 3-21.	4.1	27
95	Remobilisation features and structural control on ore grade distribution at the Konkola stratiform Cu–Co ore deposit, Zambia. Journal of African Earth Sciences, 2013, 79, 10-23.	2.0	27
96	A magmatic source of hydrothermal sulfur for the Prominent Hill deposit and associated prospects in the Olympic iron oxide copper-gold (IOCG) province of South Australia. Ore Geology Reviews, 2017, 89, 1058-1090.	2.7	27
97	Continental basinal origin of ore fluids from southwestern Massif central fluorite veins (Albigeois,) Tj ETQq1 1 0.7 447-458.	84314 rgf 3.0	3T /Overlock 26
98	Title is missing!. Water, Air, and Soil Pollution, 2001, 127, 193-204.	2.4	26
99	Metamorphic and basin fluids in quartz-carbonate-sulphide veins in the SW Scottish Highlands: a stable isotope and fluid inclusion study. Geofluids, 2004, 4, 169-185.	0.7	25
100	Hydrological investigation of a multi-stratified pit lake using radioactive and stable isotopes combined with hydrometric monitoring. Journal of Hydrology, 2014, 511, 494-508.	5.4	25
101	The influence of climate on early and burial diagenesis of Triassic and Jurassic sandstones from the Norwegian–Danish Basin. Depositional Record, 2017, 3, 60-91.	1.7	25
102	Magmatic Cu-Ni-PGE-Au sulfide mineralisation in alkaline igneous systems: An example from the Sron Garbh intrusion, Tyndrum, Scotland. Ore Geology Reviews, 2017, 80, 961-984.	2.7	25
103	Stable isotope and geochronological study of the Mawchi Sn-W deposit, Myanmar: Implications for timing of mineralization and ore genesis. Ore Geology Reviews, 2018, 95, 663-679.	2.7	25
104	Sulphur isotopes of alkaline magmas unlock long-term records of crustal recycling on Earth. Nature Communications, 2019, 10, 4208.	12.8	25
105	Dual in-aquifer and near surface processes drive arsenic mobilization in Cambodian groundwaters. Science of the Total Environment, 2019, 659, 699-714.	8.0	25
106	EVOLUTION OF SULFIDE MINERALIZATION IN FERROCARBONATITE, SWARTBOOISDRIF, NORTHWESTERN NAMIBIA: CONSTRAINTS FROM MINERAL COMPOSITIONS AND SULFUR ISOTOPES. Canadian Mineralogist, 2006, 44, 877-894.	1.0	24
107	Heavy metal, sex and granites: Crustal differentiation and bioavailability in the mid-Proterozoic. Geology, 2012, 40, 751-754.	4.4	24
108	The inherent tracer fingerprint of captured CO 2. International Journal of Greenhouse Gas Control, 2017, 65, 40-54.	4.6	24

#	Article	IF	Citations
109	Cu-Ni-PGE mineralisation at the Aurora Project and potential for a new PGE province in the Northern Bushveld Main Zone. Ore Geology Reviews, 2017, 80, 1135-1159.	2.7	24
110	Controls on the formation of stratabound dolostone bodies, Hammam Faraun Fault block, Gulf of Suez. Sedimentology, 2018, 65, 1973-2002.	3.1	24
111	Rhenium Enrichment in the Muratdere Cu-Mo (Au-Re) Porphyry Deposit, Turkey: Evidence from Stable Isotope Analyses (Î'34S, Î'18O, Î'D) and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Analysis of Sulfides. Economic Geology, 2019, 114, 1443-1466.	3.8	24
112	Sulphur isotopes in a metamorphogenic gold deposit, Macraes mine, Otago Schist, New Zealand. New Zealand Journal of Geology, and Geophysics, 1995, 38, 131-136.	1.8	23
113	Follow the methane: the search for a deep biosphere, and the case for sampling serpentinites, on Mars. International Journal of Astrobiology, 2010, 9, 193-200.	1.6	23
114	Fluid inclusion and stable isotope studies of the Mesloula Pb-Zn-Ba ore deposit, NE Algeria: Characteristics and origin of the mineralizing fluids. Journal of African Earth Sciences, 2016, 121, 119-135.	2.0	23
115	No significant boron in the hydrated mantle of most subducting slabs. Nature Communications, 2018, 9, 4602.	12.8	23
116	Regional-scale paleofluid system across the Tuscan Nappe–Umbria–Marche Apennine Ridge (northern) Tj ETC Earth, 2020, 11, 1617-1641.	Qq0 0 0 rg 2.8	gBT /Overlock 23
117	A sulphur isotope study on selected Caledonian granites of Britain and Ireland. Geological Journal, 1990, 25, 359-369.	1.3	22
118	Isotopic evidence of the depositional environment of Late Proterozoic stratiform barite mineralisation, Aberfeldy, Scotland. Chemical Geology: Isotope Geoscience Section, 1991, 87, 99-114.	0.6	22
119	Stable isotope study of the igneous, metamorphic and mineralized rocks of the Edough complex, Annaba, Northeast Algeria. Journal of African Earth Sciences, 2002, 35, 271-283.	2.0	22
120	Temporal association of arc–continent collision, progressive magma contamination in arc volcanism and formation of gold-rich massive sulphide deposits on Wetar Island (Banda arc). Gondwana Research, 2011, 19, 583-593.	6.0	22
121	Tracing the migration of mantle CO2 in gas fields and mineral water springs in south-east Australia using noble gas and stable isotopes. Geochimica Et Cosmochimica Acta, 2019, 259, 109-128.	3.9	22
122	Regional Fluid Flow and Gold Mineralization in the Dalradian of the Sperrin Mountains, Northern Ireland. Economic Geology, 2000, 95, 1389-1416.	3.8	22
123	Controls on kaolinite and dickite distribution, Highland Boundary Fault Zone, Scotland and Northern Ireland. Journal of the Geological Society, 2000, 157, 635-640.	2.1	21
124	DURATION OF MAGMATIC, HYDROTHERMAL, AND SUPERGENE ACTIVITY AT CERRO RICO DE POTOSI, BOLIVIA. Economic Geology, 2005, 100, 1647-1656.	3.8	21
125	Barite-pyrite mineralization of the Wiesbaden thermal spring system, Germany: a 500-kyr record of geochemical evolution. Geofluids, 2005, 5, 124-139.	0.7	21
126	Fluid-rock interaction during formation of metamorphic quartz veins: A REE and stable isotope study from the Rhenish Massif, Germany. Numerische Mathematik, 2010, 310, 645-682.	1.4	21

#	Article	IF	CITATIONS
127	Chloride waters of Great Britain revisited: from subsea formation waters to onshore geothermal fluids. Proceedings of the Geologists Association, 2015, 126, 453-465.	1.1	21
128	Groundwater table fluctuations recorded in zonation of microbial siderites from end-Triassic strata. Sedimentary Geology, 2016, 342, 47-65.	2.1	21
129	Origin and geodynamic setting of Late Cenozoic granitoids in Sulawesi, Indonesia. Journal of Asian Earth Sciences, 2016, 124, 102-125.	2.3	21
130	Preliminary investigation on temperature, chemistry and isotopes of mine water pumped in Bytom geological basin (USCB Poland) as a potential geothermal energy source. International Journal of Coal Geology, 2016, 164, 104-114.	5.0	21
131	Mobilisation of arsenic, selenium and uranium from Carboniferous black shales in west Ireland. Applied Geochemistry, 2019, 109, 104401.	3.0	21
132	Indicators of hot fluid migration in sedimentary basins: evidence from the UK Atlantic Margin. Petroleum Geoscience, 2003, 9, 357-374.	1.5	21
133	Iron sulphides in metasediments: Isotopic support for a retrogressive pyrrhotite to pyrite reaction. Chemical Geology: Isotope Geoscience Section, 1987, 65, 305-310.	0.6	20
134	Structural controls on non fabricâ€selective dolomitization within riftâ€related basinâ€bounding normal fault systems: Insights from the Hammam Faraun Fault, Gulf of Suez, Egypt. Basin Research, 2018, 30, 990-1014.	2.7	20
135	Critical elements in non-sulfide Zn deposits: a reanalysis of the Kabwe Zn-Pb ores (central Zambia). Mineralogical Magazine, 2018, 82, S89-S114.	1.4	20
136	The use of operationally-defined sequential Fe extraction methods for mineralogical applications: A cautionary tale from Mössbauer spectroscopy. Chemical Geology, 2020, 543, 119584.	3.3	20
137	Metamorphic ore remobilization in the HÃ#efors district, Bergslagen, Sweden: constraints from mineralogical and small-scale sulphur isotope studies. Mineralium Deposita, 2005, 40, 100-114.	4.1	19
138	Pink and Red Spinels In Marble: Trace Elements, Oxygen Isotopes, and Sources. Canadian Mineralogist, 2017, 55, 743-761.	1.0	19
139	A Sulphur Isotope Study of Iron Sulphides in the Late Precambrian Dalradian Easdale Slate Formation, Argyll, Scotland. Mineralogical Magazine, 1988, 52, 483-490.	1.4	19
140	Constraints on the Origins of Fluids Forming Irish Zn-Pb-Ba Deposits: Evidence from the Composition of Fluid Inclusions. Economic Geology, 2002, 97, 471-480.	3.8	19
141	BACTERIA WERE RESPONSIBLE FOR THE MAGNITUDE OF THE WORLD-CLASSHYDROTHERMAL BASE METAL SULFIDE OREBODY AT NAVAN, IRELAND. Economic Geology, 2001, 96, 885-890.	3.8	18
142	Stable isotope study of the mineralization and alteration in the Madjarovo Pb–Zn district, south-east Bulgaria. Mineralium Deposita, 2007, 42, 691-713.	4.1	18
143	The geology and geochemistry of the Lumwana Cu ($\hat{A}\pm$ Co $\hat{A}\pm$ U) deposits, NW Zambia. Mineralium Deposita, 2013, 48, 137-153.	4.1	18
144	Paleoproterozoic manganese and base metals deposits at Kisenge-Kamata (Katanga, D.R. Congo). Ore Geology Reviews, 2018, 96, 181-200.	2.7	18

#	Article	IF	CITATIONS
145	A Review of the Performance of Minewater Heating and Cooling Systems. Energies, 2021, 14, 6215.	3.1	18
146	Low-latitude meteoric fluid flow along the Cloncurry Fault, Cloncurry district, NW Queensland, Australia: geodynamic and metallogenic implications. Chemical Geology, 2004, 207, 117-132.	3.3	17
147	The habitability of vesicles in martian basalt. Astronomy and Geophysics, 2013, 54, 1.17-1.21.	0.2	17
148	Extremely negative and inhomogeneous sulfur isotope signatures in Cretaceous Chilean manto-type Cu–(Ag) deposits, Coastal Range of central Chile. Ore Geology Reviews, 2014, 56, 13-24.	2.7	17
149	The geology and genesis of the iron skarns of the Turgai belt, northwestern Kazakhstan. Ore Geology Reviews, 2017, 85, 216-246.	2.7	17
150	Phosphorite geochemistry: Isotopic evidence for meteoric alteration of francolite on a local scale. Chemical Geology: Isotope Geoscience Section, 1987, 65, 415-425.	0.6	16
151	Development and use of in situ laser sulfur isotope analyses for pyrite-anhydrite geothermometry: An example from the pyrite deposits of the Cameros Basin, NE Spain. Geochimica Et Cosmochimica Acta, 1999, 63, 509-513.	3.9	16
152	Fluid mixing and thermal regimes beneath the PACMANUS hydrothermal field, Papua New Guinea: Helium and oxygen isotope data. Earth and Planetary Science Letters, 2011, 304, 93-102.	4.4	16
153	Recent sedimentation in the Black Sea: New insights from radionuclide distributions and sulfur isotopes. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 66, 103-113.	1.4	16
154	Origin of heavy oil in Cretaceous petroleum reservoirs. Bullentin of Canadian Petroleum Geology, 2016, 64, 106-118.	0.3	16
155	Micro-scale sulfur isotope and chemical variations in sphalerite from the Bleiberg Pb-Zn deposit, Eastern Alps, Austria. Ore Geology Reviews, 2017, 90, 52-62.	2.7	16
156	Mantle sources and magma evolution in Europe's largest rare earth element belt (Gardar Province,) Tj ETQq $0\ 0\ 0$ 117034.	rgBT /Ovei 4.4	rlock 10 Tf 50 16
157	From basin to basement: the movement of surface fluids into the crust. Journal of Geochemical Exploration, 2000, 69-70, 527-531.	3.2	15
158	Fluid evolution during burial and Variscan deformation in the Lower Devonian rocks of the High-Ardenne slate belt (Belgium): sources and causes of high-salinity and C–O–H–N fluids. Contributions To Mineralogy and Petrology, 2005, 150, 102-118.	3.1	15
159	The geochemical and isotopic composition of ground waters in West Bengal: tracing ground-surface water interaction and its role in arsenic release. Mineralogical Magazine, 2008, 72, 441-444.	1.4	15
160	Structurally focused fluid flow during orogenesis: the Islay Anticline, SW Highlands, Scotland. Journal of the Geological Society, 2010, 167, 659-674.	2.1	15
161	Long term geological record of a global deep subsurface microbial habitat in sand injection complexes. Scientific Reports, 2013, 3, 1828.	3.3	15
162	Mantle heat drives hydrothermal fluids responsible for carbonate-hosted base metal deposits: evidence from 3He/4He of ore fluids in the Irish Pb-Zn ore district. Mineralium Deposita, 2014, 49, 547-553.	4.1	15

#	Article	IF	CITATIONS
163	Geological setting and timing of the cassiterite vein type mineralization of the Kalima area (Maniema,) Tj ETQq1 1	0,784314	rgBT /Over
164	Biogeochemical probing of microbial communities in a basaltâ€hosted hot spring at Kverkfjöll volcano, Iceland. Geobiology, 2018, 16, 507-521.	2.4	15
165	Detailed Sulphur Isotope Studies of Lower Palaeozoic-Hosted Pyrite Below the Giant Navan Zn + Pb Mine, Ireland: Evidence of Mass Transport of Crustal S to a Sediment-Hosted Deposit. Mineralogical Magazine, 1994, 58A, 109-110.	1.4	15
166	A sulphur isotope study of iron sulphides in the late Precambrian Dalradian Ardrishaig Phyllite Formation, Knapdale, Argyll. Scottish Journal of Geology, 1994, 30, 63-71.	0.1	14
167	Regional Fluid Flow and Gold Mineralization in the Dalradianof the Sperrin Mountains, Northern Ireland. Economic Geology, 2000, 95, 1389-1416.	3.8	14
168	Fluid flow, alteration and polysulphide mineralisation associated with a low-angle reverse shear zone in the Lower Palaeozoic of the Anglo-Brabant fold belt, Belgium. Tectonophysics, 2002, 348, 73-92.	2.2	14
169	Sulphur isotope geochemistry of black shale-hosted antimony mineralization, Arnsberg, northern Rhenish Massif, Germany: implications for late-stage fluid flow during the Variscan orogeny. Journal of the Geological Society, 2003, 160, 299-308.	2.1	14
170	Graphite from Palaeoproterozoic enhanced carbon burial, and its metallogenic legacy. Geological Magazine, 2021, 158, 1711-1718.	1.5	14
171	Stable isotope-based modeling of the origin and genesis of an unusual Au–Ag–Sn–W epithermal system at Cirotan, Indonesia. Chemical Geology, 2005, 219, 237-260.	3.3	13
172	Micro-Fourier Transform Infrared (FT-IR) and Î'D value investigation of hydrothermal vein quartz: Interpretation of fluid inclusion Î'D values in hydrothermal systems. Geochimica Et Cosmochimica Acta, 2008, 72, 4595-4606.	3.9	13
173	Anomalous alkaline sulphate fluids produced in a magmatic hydrothermal system — Savo, Solomon Islands. Chemical Geology, 2010, 275, 35-49.	3.3	13
174	New mineralogical and isotopic constraints on Main Zone-hosted PGE mineralisation at Moorddrift, northern Bushveld Complex. Mineralium Deposita, 2013, 48, 675-686.	4.1	13
175	Subsurface absorption of anthropogenic warming of the land surface: The case of the world's largest brickworks (Stewartby, Bedfordshire, UK). Science of the Total Environment, 2015, 508, 585-603.	8.0	13
176	Sulphide Sinking in Magma Conduits: Evidence from Mafic–Ultramafic Plugs on Rum and the Wider North Atlantic Igneous Province. Journal of Petrology, 2016, 57, 383-416.	2.8	13
177	Evidence for an impact-induced biosphere from the δ34S signature of sulphides in the Rochechouart impact structure, France. Earth and Planetary Science Letters, 2017, 460, 192-200.	4.4	13
178	Tellurium, selenium and cobalt enrichment in Neoproterozoic black shales, Gwna Group, UK: Deep marine trace element enrichment during the Second Great Oxygenation Event. Terra Nova, 2018, 30, 244-253.	2.1	13
179	On the common occurrence of sulphate with elevated Î'34S in European mine waters: Sulphides, evaporites or seawater?. International Journal of Coal Geology, 2020, 232, 103619.	5.0	13
180	Petrology of quartz syenite and hauyne syenite clasts from the Pitigliano Formation, Latera caldera, Vulsini District, Central Italy. European Journal of Mineralogy, 1998, 10, 333-354.	1.3	13

#	Article	IF	Citations
181	The genesis of Cu-bearing quartz veins by metamorphic remobilization from stratiform red bed deposits, SW County Cork, Ireland. Mineralogy and Petrology, 1996, 57, 73-89.	1.1	12
182	Petrological, geochemical, and stable isotope constraints on the genesis of the Miocene igneous rocks of Chetaibi and Cap de Fer (NE Algeria). Journal of African Earth Sciences, 2005, 41, 445-465.	2.0	12
183	Geochronological, stable isotopes and fluid inclusion constraints for a premetamorphic development of the intrusive-hosted BjŶrkdal Au deposit, northern Sweden. International Journal of Earth Sciences, 2009, 98, 1027-1052.	1.8	12
184	Isotopic (S, Sr, Sm/Nd, D, Pb) evidences for multiple sources in the Early Jurassic Chaillac F-Ba ore deposit (Indre, France). Bulletin - Societie Geologique De France, 2009, 180, 83-94.	2.2	12
185	Geochemical and stable isotopic constraints on the generation and passive treatment of acidic, Fe–SO4 rich waters. Science of the Total Environment, 2012, 420, 238-249.	8.0	12
186	Effective crustal permeability controls fault evolution: An integrated structural, mineralogical and isotopic study in granitic gneiss, Monte Rosa, northern Italy. Tectonophysics, 2016, 690, 160-173.	2.2	12
187	Oxygen Isotope Microanalysis By Secondary Ion Mass Spectrometry Suggests Continuous 300-million-year History of Calcite Cementation and Dolomitization in the Devonian Bakken Formation. Journal of Sedimentary Research, 2018, 88, 91-104.	1.6	12
188	A Review of the Hydrochemistry of a Deep Sedimentary Aquifer and Its Consequences for Geothermal Operation: Klaipeda, Lithuania. Geofluids, 2019, 2019, 1-20.	0.7	12
189	A missing link between ancient and active mafic-hosted seafloor hydrothermal systems – Magmatic volatile influx in the exceptionally preserved Mala VMS deposit, Troodos, Cyprus. Chemical Geology, 2021, 567, 120127.	3.3	12
190	A sulphur isotopic investigation of the potential sulphur sources for Lower Palaeozoic-hosted vein mineralization in the English Lake District. Journal of the Geological Society, 1991, 148, 993-1004.	2.1	12
191	Measurements of the stable carbon isotope composition of dissolved inorganic carbon in the northeastern Atlantic and Nordic Seas during summer 2012. Earth System Science Data, 2015, 7, 127-135.	9.9	12
192	S, C, Sr, and Pb sources in the Pliocene Silver Creek porphyry, Mo system Rio, Colorado. Economic Geology, 1998, 93, 32-46.	3.8	11
193	Sulphur isotope variations in diagenetic pyrite from core plug to sub-millimetre scales. Clay Minerals, 2000, 35, 303-311.	0.6	11
194	Diachronic patterns of dental hypoplasias and vault porosities during the predynastic in the Naqada region, Upper Egypt. American Journal of Human Biology, 2001, 13, 733-743.	1.6	11
195	Kaolin polytype evidence for a hot-fluid pulse along Caledonian thrusts during rifting of the European Margin. Mineralogical Magazine, 2004, 68, 419-432.	1.4	11
196	Mineralogy and geochemistry of El Dorado epithermal gold deposit, El Sauce district, central-northern Chile. Mineralogy and Petrology, 2008, 92, 341-360.	1.1	11
197	Extensive evaporation in a modern temperate estuary: Stable isotopic and compositional evidence. Limnology and Oceanography, 2015, 60, 1241-1250.	3.1	11
198	Unconventional non-magmatic sulfur source for the Mazarrón Zn–Pb–Cu–Ag–Fe epithermal deposit (SE Spain). Ore Geology Reviews, 2016, 72, 1102-1115.	2.7	11

#	Article	IF	CITATIONS
199	Microbial sulphate reduction during Neoproterozoic glaciation, Port Askaig Formation, UK. Journal of the Geological Society, 2017, 174, 850-854.	2.1	11
200	A black shale protolith for gold-tellurium mineralisation in the Dalradian Supergroup (Neoproterozoic) of Britain and Ireland. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science, 2017, 126, 161-175.	0.8	11
201	Hydrothermal iron oxide-Cu-Au (IOCG) mineralization at the Jalal-Abad deposit, northwestern Zarand, Iran. Ore Geology Reviews, 2019, 106, 300-317.	2.7	11
202	A sulphur isotopic study of the Bleikvassli Zn-Pb-Cu deposit, Nordland, northern Norway. Mineralium Deposita, 1992, 27, 284.	4.1	10
203	Sulphur isotope characteristics of recrystallisation, remobilisation and reaction processes: a case study from the Ramsbeck Pb-Zn deposit, Germany. Mineralium Deposita, 2001, 36, 670-679.	4.1	10
204	Timing and genesis of base-metal mineralisation in black shales of the Upper Permian Ravnefjeld Formation, Wegener HalvÃ, East Greenland. Mineralium Deposita, 2003, 38, 108-123.	4.1	10
205	Terrane and basement discrimination in northern Britain using sulphur isotopes and mineralogy of ore deposits. Geological Society Special Publication, 2005, 248, 133-151.	1.3	10
206	Ore deposits in an evolving Earth: an introduction. Geological Society Special Publication, 2015, 393, 1-8.	1.3	10
207	Contrasting mechanisms for crustal sulphur contamination of mafic magma: evidence from dyke and sill complexes from the British Palaeogene Igneous Province. Journal of the Geological Society, 2015, 172, 443-458.	2.1	10
208	The Cristal Zinc prospect (Amazonas region, northern Peru). Part I: New insights on the sulfide mineralization in the Bongar \tilde{A}_i province. Ore Geology Reviews, 2018, 94, 261-276.	2.7	10
209	Sulphides with high Î'34S from the Late Precambrian Bonahaven Dolomite, Argyll, Scotland. Mineralogical Magazine, 1994, 58, 486-490.	1.4	10
210	Geochemistry and metallogeny of Neoproterozoic pyrite in oxic and anoxic sediments. Geochemical Perspectives Letters, 0, , 12-16.	5.0	10
211	The palaeoenvironment of East Kirkton, West Lothian, Scotland: stable isotope evidence from silicates and sulphides. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1993, 84, 223-237.	0.3	9
212	Drosophila Wnt/Fz Pathways. Science Signaling, 2005, 2005, cm5-cm5.	3.6	9
213	Sulphur stable isotope systematics in diagenetic pyrite from the North Sea hydrocarbon reservoirs revealed by laser combustion analysis. Isotopes in Environmental and Health Studies, 2012, 48, 144-165.	1.0	9
214	How the Neoproterozoic S-isotope record illuminates the genesis of vein gold systems: an example from the Dalradian Supergroup in Scotland. Geological Society Special Publication, 2015, 393, 213-247.	1.3	9
215	Constraints on the development of orogenic style gold mineralisation at Mineral de Talca, Coastal Range, central Chile: evidence from a combined structural, mineralogical, S and Pb isotope and geochronological study. Mineralium Deposita, 2015, 50, 675-696.	4.1	9
216	Surface and Groundwater Hydrochemistry of the Menengai Caldera Geothermal Field and Surrounding Nakuru County, Kenya. Energies, 2019, 12, 3131.	3.1	9

#	Article	IF	Citations
217	Geology and Metallogenic Evolution of the Polymetallic Deposits of the Alcudia Valley Mineral Field, Eastern Sierra Morena, Spain. Economic Geology, 2003, 98, 577-605.	3.8	9
218	A sulphur isotope study of Ni-Cu mineralization in the Huntly-Knock Caledonian mafic and ultramafic intrusions of northeast Scotland. Journal of the Geological Society, 1989, 146, 675-684.	2.1	8
219	Inferring intermediateâ€scale fluid flow in a heterogeneous metasedimentary multilayer sequence during progressive deformation: evidence from the Monts d'Arrée slate belt (Brittany, France). Geofluids, 2008, 8, 143-158.	0.7	8
220	Tracing Carbon: Natural Mineral Carbonation and The Incorporation of Atmospheric vs. Recycled CO2. Energy Procedia, 2013, 37, 5897-5904.	1.8	8
221	Copper–Gold Skarn Mineralization at the Karavansalija Ore Zone, Rogozna Mountain, Southwestern Serbia. Resource Geology, 2015, 65, 328-344.	0.8	8
222	Multidecadal accumulation of anthropogenic and remineralized dissolved inorganic carbon along the Extended Ellett Line in the northeast Atlantic Ocean. Global Biogeochemical Cycles, 2016, 30, 293-310.	4.9	8
223	The Kago low-sulfidation gold and silver deposit: A peripheral mineralisation to the Nansatsu high-sulfidation system, southern Kyushu, Japan. Ore Geology Reviews, 2018, 102, 951-966.	2.7	8
224	Multi-stage pyrite genesis and epigenetic selenium enrichment of Greenburn coals (East Ayrshire). Scottish Journal of Geology, 2018, 54, 37-49.	0.1	8
225	Stable isotope and fluid inclusion study of sediment-hosted stratiform copper deposits from the Neuquén Basin, Argentina. Mineralium Deposita, 2019, 54, 415-436.	4.1	8
226	A combined pumping test and heat extraction/recirculation trial in an abandoned haematite ore mine shaft, Egremont, Cumbria, UK. Sustainable Water Resources Management, 2019, 5, 51-69.	2.1	8
227	Rapid water-rock interactions evidenced by hydrochemical evolution of flowback fluid during hydraulic stimulation of a deep geothermal borehole in granodiorite: Pohang, Korea. Applied Geochemistry, 2019, 111, 104445.	3.0	8
228	Mixed metamorphic and fluid graphite deposition in Palaeoproterozoic supracrustal rocks of the Lewisian Complex, NW Scotland. Terra Nova, 2021, 33, 541.	2.1	8
229	Hydrochemical characterization, spatial distribution, and geochemical controls on arsenic and boron in waters from arid Arica and Parinacota, northern Chile. Science of the Total Environment, 2022, 806, 150206.	8.0	8
230	Timing of Interplay between Hydrothermal and Surface Fluids in the Navan Zn + Pb Orebody, Ireland: Evidence from Metal Distribution Trends, Mineral Textures, and Â34S Analyses. Economic Geology, 2002, 97, 73-91.	3.8	8
231	Diagenesis of celestite in quartz geodes from the Basque-Cantabric Basin, Northern Spain: Evidence from sulphur and strontium isotopes. Chemical Geology, 1990, 84, 354-356.	3.3	7
232	Petrological, geochemical and isotopic characteristics of the Collo ultramafic rocks (NE Algeria). Journal of African Earth Sciences, 2017, 125, 59-72.	2.0	7
233	The Koudia El Hamra Ag–Pb–Zn deposit, Jebilet, Morocco: Mineralogy and ore fluid characterization. Journal of African Earth Sciences, 2018, 145, 1-17.	2.0	7
234	Genesis of the Pic de Fon Iron Oxide Deposit, Simandou Range, Republic of Guinea, West Africa., 2008, , .		7

#	Article	IF	CITATIONS
235	Genesis of porphyry and plutonic mineralisation systems in metaluminous granitoids of the Grampian Terrane, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1994, 85, 221-237.	0.7	6
236	A NEW FOSSIL VENT BIOTA IN THE BALLYNOE BARITE DEPOSIT, SILVERMINES, IRELAND: EVIDENCE FOR INTRACRATONIC SEA-FLOOR HYDROTHERMALACTIVITY ABOUT 352 Ma. Economic Geology, 2003, 98, 649-656.	3.8	6
237	Evidence for life in the isotopic analysis of surface sulphates in the Haughton impact structure, and potential application on Mars. International Journal of Astrobiology, 2012, 11, 93-101.	1.6	6
238	Preservation of Mesoproterozoic age deep burial fluid signatures, NW Scotland. Marine and Petroleum Geology, 2014, 55, 275-281.	3.3	6
239	Abundant sulphate in the Neoproterozoic ocean: implications of constant î' ³⁴ S of barite in the Aberfeldy SEDEX deposits, Scottish Dalradian. Geological Society Special Publication, 2015, 393, 189-212.	1.3	6
240	Petrology, geochemistry and stable isotope studies of the Miocene igneous rocks and related sulphide mineralisation of Oued Amizour (NE Algeria). Ore Geology Reviews, 2018, 101, 312-329.	2.7	6
241	Coupling Mineralogy, Textures, Stable and Radiogenic Isotopes in Identifying Ore-Forming Processes in Irish-Type Carbonate-Hosted Zn–Pb Deposits. Minerals (Basel, Switzerland), 2019, 9, 335.	2.0	6
242	Constraining the Fluid History of a CO 2 â€H 2 S Reservoir: Insights From Stable Isotopes, REE, and Fluid Inclusion Microthermometry. Geochemistry, Geophysics, Geosystems, 2019, 20, 359-382.	2.5	6
243	Detailed internal structure and along-strike variability of the core of a plate boundary fault: the Highland Boundary fault, Scotland. Journal of the Geological Society, 2020, 177, 283-296.	2.1	6
244	New insights into the genesis of willemite (Zn2SiO4) from zinc nonsulfide deposits, through trace elements and oxygen isotope geochemistry. Ore Geology Reviews, 2020, 118, 103307.	2.7	6
245	Mineral separation protocol for accurate and precise rhenium-osmium (Re-Os) geochronology and sulphur isotope composition of individual sulphide species. MethodsX, 2020, 7, 100944.	1.6	6
246	Source of gold in Neoarchean orogenic-type deposits in the North Atlantic Craton, Greenland: Insights for a proto-source of gold in sub-seafloor hydrothermal arsenopyrite in the Mesoarchean. Precambrian Research, 2020, 343, 105717.	2.7	6
247	Mineral chemistry, fluid inclusion and stable isotope studies of the Suyoc epithermal veins: Insights to Au-Cu mineralization in southern Mankayan Mineral District, Philippines. Ore Geology Reviews, 2021, 131, 104035.	2.7	6
248	Stable carbon isotopes of dissolved inorganic carbon for a zonal transect across the subpolar North Atlantic Ocean in summer 2014. Earth System Science Data, 2016, 8, 221-233.	9.9	6
249	Age determination of the Lower Watrous red-beds of the Williston Basin, Saskatchewan, Canada. Bullentin of Canadian Petroleum Geology, 2012, 60, 227-238.	0.3	5
250	Constraining causes of fish mass mortality using ultra-high-resolution biomarker measurement. Chemical Geology, 2014, 385, 156-162.	3.3	5
251	Evidence for microbial activity in British and Irish Ordovician pillow lavas. Geological Journal, 2015, 50, 497-508.	1.3	5
252	Volcanological and environmental controls on the Snowdon mineralization, North Wales, UK: A failed volcanogenic massive sulfide system in the Avalon Zone of the British Caledonides. Ore Geology Reviews, 2017, 89, 557-586.	2.7	5

#	Article	IF	Citations
253	Generation of the Mt Kinabalu Granite by Crustal Contamination of Intraplate Magma Modelled by Equilibrated Major Element Assimilation with Fractional Crystallization (EME-AFC). Journal of Petrology, 2019, 60, 1461-1487.	2.8	5
254	Remarkably uniform oxygen isotope systematics for co-existing pairs of gem-spinel and calcite in marble, with special reference to Vietnamese deposits. Comptes Rendus - Geoscience, 2019, 351, 27-36.	1.2	5
255	Diatremes Act as Fluid Conduits for Zn-Pb Mineralization in the SW Irish Ore Field. Economic Geology, 2019, 114, 117-125.	3.8	5
256	Detecting ancient life: Investigating the nature and origin of possible stromatolites and associated calcite from a one billion year old lake. Precambrian Research, 2019, 328, 309-320.	2.7	5
257	The Sidi El Hemissi Triassic "ophites―(Souk Ahras, NE Algeria): petrology, geochemistry, and petrogenesis. Arabian Journal of Geosciences, 2019, 12, 1.	1.3	5
258	The Dairi SEDEX ZnÂ+ÂPbÂ+ÂAg deposit (North Sumatra, Indonesia): Insights from mineralogy and sulfur isotope systematics. Ore Geology Reviews, 2020, 122, 103510.	2.7	5
259	Fluid and metal sources in the FÃBoliden hypozonal orogenic gold deposit, Sweden. Mineralium Deposita, 2021, 56, 425-440.	4.1	5
260	Assessment of Grid-Based Whole-Rock ÂD Surveys in Exploration: Boulder County Epithermal Tungsten Deposit, Colorado. Economic Geology, 2001, 96, 133-143.	3.8	5
261	Coevolution of diagenetic fronts and fluid-fracture pathways. Scientific Reports, 2022, 12, .	3.3	5
262	AN Re-Os DATE FOR MOLYBDENITE-BEARING QUARTZ VEIN MINERALIZATION WITHIN THE KANGERLUSSUAQ ALKALINE COMPLEX, EAST GREENLAND: IMPLICATIONS FOR THE TIMING OF REGIONAL METALLOGENESIS. Economic Geology, 2012, 107, 713-722.	3.8	4
263	10Be, 18O and radiogenic isotopic constraints on the origin of adakitic signatures: a case study from Solander and Little Solander Islands, New Zealand. Contributions To Mineralogy and Petrology, 2014, 168, 1.	3.1	4
264	The oceanic anoxic event 2 at Es Souabaa (Tebessa, NE Algeria): bio-events and stable isotope study. Arabian Journal of Geosciences, 2018, 11, 1.	1.3	4
265	Petrogenesis and geochemical halos of the amphibolite facies, Lower Proterozoic, Kerry Road volcanogenic massive sulfide deposit, Loch Maree Group, Gairloch, NW Scotland. Ore Geology Reviews, 2020, 124, 103623.	2.7	4
266	Shallow-marine serpentinization-derived fluid seepage in the Upper Cretaceous Qahlah Formation, United Arab Emirates. Geological Magazine, 2021, 158, 1561-1571.	1.5	4
267	Contrasting microfossil preservation and lake chemistries within the 1200–1000 Ma Torridonian Supergroup of NW Scotland. Geological Society Special Publication, 2017, 448, 105-119.	1.3	4
268	Sulfur isotopes of hydrothermal vent fossils and insights into microbial sulfur cycling within a lower Paleozoic (Ordovicianâ€early Silurian) vent community. Geobiology, 2022, 20, 465-478.	2.4	4
269	Understanding the fate of iron in a modern temperate estuary: Leirárvogur, Iceland. Applied Geochemistry, 2011, 26, S16-S19.	3.0	3
270	Orogenic gold mineralisation hosted by Archaean basement rocks at Sortekap, Kangerlussuaq area, East Greenland. Mineralium Deposita, 2013, 48, 453-466.	4.1	3

#	Article	IF	Citations
271	Neoproterozoic copper cycling, and the rise of metazoans. Scientific Reports, 2019, 9, 3638.	3.3	3
272	Formation of the giant Aynak copper deposit, Afghanistan: evidence from mineralogy, lithogeochemistry and sulphur isotopes. International Geology Review, 2021, 63, 2104-2128.	2.1	3
273	Stable C, O, and S Isotope Record of Magmatic-Hydrothermal Interactions Between the Falémé Fe Skarn and the Loulo Au Systems in Western Mali. Economic Geology, 2020, 115, 1537-1558.	3.8	3
274	Pyritic mineralization halo above the Tara Deep Zn-Pb deposit, Navan, Ireland: Evidence for sub-seafloor exhalative hydrothermal processes?. Ore Geology Reviews, 2022, 140, 104415.	2.7	3
275	Demonstrating deep biosphere activity in the geological record of lake sediments, on Earth and Mars. International Journal of Astrobiology, 2018, 17, 380-385.	1.6	2
276	Sulphur isotopes in deep groundwater reservoirs: Evidence from post-stimulation flowback at the Pohang geothermal facility, Korea. Geothermics, 2021, 91, 102003.	3.4	2
277	Synsedimentary to Diagenetic Cu±Co Mineralization in Mesoproterozoic Pyritic Shale Driven by Magmatic-Hydrothermal Activity on the Edge of the Great Falls Tectonic Zone–Black Butte, Helena Embayment, Belt-Purcell Basin, USA: Evidence from Sulfide Re-Os Isotope Geochemistry. Lithosphere, 2021. 2021.	1.4	2
278	A Rusty Record of Weathering and Groundwater Movement in the Hyperarid Central Andes. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009759.	2.5	2
279	DURATION OF MAGMATIC, HYDROTHERMAL, AND SUPERGENE ACTIVITY AT CERRO RICO DE POTOSI, BOLIVIA. Economic Geology, 2005, 100, 1647-1656.	3.8	2
280	A Distal, High-grade Irish-type Orebody: Petrographic, Sulfur Isotope, and Sulfide Chemistry of the Island Pod Zn-Pb Orebody, Lisheen, Ireland. Economic Geology, 0, , .	3.8	2
281	Quartz Veins Record Vertical Flow at a Graben Edge: Fulmar Oil Field, Central North Sea. AAPG Bulletin, 1997, 81 (1997), .	1.5	2
282	Le filon (Zn, F) de Peyrebrune (SW Massif central, France): caractérisation géochimique des fluides au cours du MésozoÃque à la bordure orientale du bassin d'Aquitaine. Comptes Rendus De L'Académie Des Sciences Earth & Planetary Sciences Série II, Sciences De La Terre Et Des Planà tes =, 1997, 324, 899-906.	0.2	1
283	Alteration and fluid characteristics of a mineralised shear zone in the Lower Palaeozoic of the Anglo-Brabant belt, Belgium. Journal of Geochemical Exploration, 2000, 69-70, 317-321.	3.2	1
284	Geology and Metallogenic Evolution of the PolymetallicDeposits of the Alcudia Valley Mineral Field, Eastern Sierra Morena, Spain. Economic Geology, 2003, 98, 577-605.	3.8	1
285	Mineralogical and chemical features of gangue phases in relation to hydrothermal mineralization and their host rocks., 2005,, 1057-1060.		1
286	Precipitation trapped in datable rock-forming minerals: estimating Antarctic palaeoelevations - a discussion. Antarctic Science, 2006, 18, 123-139.	0.9	1
287	Reply to the comments by Marignac and Cathelineau on the paper by $S\tilde{A}_i$ nchez-Espa $\tilde{A}\pm a$ et al.: Source and evolution of ore-forming hydrothermal fluids in the northern iberian Pyrite Belt massive sulphide deposits (SW Spain): evidence from fluid inclusions and stable isotopes (Mineralium Deposita 38:) Tj ETQq1 1 0.3	784314 rg	BT /Overlock
288	Enhanced microbial activity in carbon-rich pillow lavas, Ordovician, Great Britain and Ireland. Geology, 2015, 43, 827-830.	4.4	1

#	Article	IF	CITATIONS
289	Stable isotopes of oxygen and hydrogen in meteoric water during the Cryogenian Period. Precambrian Research, 2019, 320, 253-260.	2.7	1
290	Kilometre-scale compartmentalization of fluid sources to a fossil hydrothermal system. Ore Geology Reviews, 2020, 116, 103207.	2.7	1
291	Assessment of Grid-Based Whole-Rock ÂD Surveys in Exploration:Boulder County Epithermal Tungsten Deposit, Colorado. Economic Geology, 2001, 96, 133-143.	3.8	1
292	Carbon in Mineralised Plutons. Geosciences (Switzerland), 2022, 12, 202.	2.2	1
293	The Candelaria silver deposit, Nevada ? preliminary sulphur, oxygen and hydrogen isotope geochemistry. Mineralium Deposita, 1994, 29, 318.	4.1	0
294	Interplay between sulphur sources in polysulphidemineralisation in the Lower Palaeozoic of the Anglo-Brabant Fold belt, Belgium. Journal of Geochemical Exploration, 2003, 78-79, 607-611.	3.2	0
295	Giant mineral deposits and underlying Earth processes. Mineralium Deposita, 2005, 40, 449-450.	4.1	0
296	Stable Isotope and Geochemical Observations in the Kago Low-sulfidation Au/Ag Deposit, Southern Kyushu, Japan. Procedia Earth and Planetary Science, 2013, 6, 77-82.	0.6	0
297	Surface and groundwater hydrochemistry in the mid-Gregory Rift, Kenya: first impressions and potential implications for geothermal systems. E3S Web of Conferences, 2019, 98, 07004.	0.5	O
298	Distinct sulfur saturation histories within the Palaeogene Magilligan Sill, Northern Ireland: implications for Ni – Cu – platinum group element mineralisation in the North Atlantic Igne Province. Canadian Journal of Earth Sciences, 2019, 56, 774-789.	0113	0
299	87Sr/86Sr, 3He/4He, REE and stable isotope (î~34S, î~18O) constraints on the hydrothermal fluid evolution of the PACMANUS system, Manus Basin., 2005, , 813-815.		0
300	Age and provenance of groundwater in a shallow arsenic-affected aquifer in the lower Mekong Basin, Kandal Province, Cambodia. Arsenic in the Environment Proceedings, 2016, , 74-75.	0.0	0
301	The Oued Amizour VHMS Zn-Deposit, Northeastern Algeria: Does It Have a Kuroko-Type Signature?. Advances in Science, Technology and Innovation, 2018, , 1325-1328.	0.4	O
302	Caractéristiques pétrologiques et géochimiques des roches magmatiques d'El Aouana, NE algérien. Estudios Geologicos, 2020, 76, 124.	0.2	0
303	Origin of the Mizab barite vein-type deposit, Ain Mimoun (NE Algeria): evidence from fluid inclusion and S-, O- and C-stable isotope studies. Arabian Journal of Geosciences, 2022, 15, 1.	1.3	0
304	The Eocene-Oligocene climate transition in the Alpine foreland basin: Paleoenvironmental change recorded in submarine fans. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 600, 111064.	2.3	0
305	"Race― Confusion about zoological and social taxonomies, and their places in science. American Journal of Human Biology, 2001, 13, 569-575.	1.6	0