List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7027474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microbial Cell Factories, 2011, 10, 99.	4.0	288
2	Microbial response to acid stress: mechanisms and applications. Applied Microbiology and Biotechnology, 2020, 104, 51-65.	3.6	280
3	Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects. Biotechnology Advances, 2015, 33, 830-841.	11.7	185
4	CRISPR/Cas9-Based Efficient Genome Editing in <i>Clostridium ljungdahlii</i> , an Autotrophic Gas-Fermenting Bacterium. ACS Synthetic Biology, 2016, 5, 1355-1361.	3.8	171
5	Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications. Metabolic Engineering, 2018, 50, 109-121.	7.0	163
6	Combinatorial pathway enzyme engineering and host engineering overcomes pyruvate overflow and enhances overproduction of N-acetylglucosamine in Bacillus subtilis. Microbial Cell Factories, 2019, 18, 1.	4.0	163
7	CRISPRâ€based genome editing and expression control systems in <i>Clostridium acetobutylicum</i> and <i>Clostridium beijerinckii</i> . Biotechnology Journal, 2016, 11, 961-972.	3.5	153
8	How to achieve high-level expression of microbial enzymes. Bioengineered, 2013, 4, 212-223.	3.2	137
9	Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production. Metabolic Engineering, 2014, 23, 42-52.	7.0	130
10	Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology. Applied Microbiology and Biotechnology, 2013, 97, 6113-6127.	3.6	121
11	Microbial response to environmental stresses: from fundamental mechanisms to practical applications. Applied Microbiology and Biotechnology, 2017, 101, 3991-4008.	3.6	117
12	Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis. Nucleic Acids Research, 2020, 48, 996-1009.	14.5	111
13	Economical challenges to microbial producers of butanol: Feedstock, butanol ratio and titer. Biotechnology Journal, 2011, 6, 1348-1357.	3.5	108
14	Microbial production of glucosamine and N-acetylglucosamine: advances and perspectives. Applied Microbiology and Biotechnology, 2013, 97, 6149-6158.	3.6	105
15	Microbial production of propionic acid from propionibacteria: Current state, challenges and perspectives. Critical Reviews in Biotechnology, 2012, 32, 374-381.	9.0	101
16	Reconstruction of xylose utilization pathway and regulons in Firmicutes. BMC Genomics, 2010, 11, 255.	2.8	100
17	Optimization and scale-up of propionic acid production by propionic acid-tolerant Propionibacterium acidipropionici with glycerol as the carbon source. Bioresource Technology, 2010, 101, 8902-8906.	9.6	98
18	Pyruvate-responsive genetic circuits for dynamic control of central metabolism. Nature Chemical Biology, 2020, 16, 1261-1268.	8.0	94

#	Article	IF	CITATIONS
19	Engineering a Bifunctional Phr60-Rap60-Spo0A Quorum-Sensing Molecular Switch for Dynamic Fine-Tuning of Menaquinone-7 Synthesis in <i>Bacillus subtilis</i> . ACS Synthetic Biology, 2019, 8, 1826-1837.	3.8	87
20	Microbial Chassis Development for Natural Product Biosynthesis. Trends in Biotechnology, 2020, 38, 779-796.	9.3	84
21	CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis. Metabolic Engineering, 2018, 49, 232-241.	7.0	83
22	Synthetic Biology Toolbox and Chassis Development in Bacillus subtilis. Trends in Biotechnology, 2019, 37, 548-562.	9.3	81
23	Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis. Metabolic Engineering, 2014, 24, 61-69.	7.0	77
24	Metabolic engineering strategies to enable microbial utilization of C1 feedstocks. Nature Chemical Biology, 2021, 17, 845-855.	8.0	77
25	Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine. Metabolic Engineering, 2013, 19, 107-115.	7.0	76
26	Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate. Journal of Biotechnology, 2017, 253, 1-9.	3.8	74
27	Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future directions. Biotechnology Advances, 2017, 35, 20-30.	11.7	74
28	Coupling metabolic addiction with negative autoregulation to improve strain stability and pathway yield. Metabolic Engineering, 2020, 61, 79-88.	7.0	70
29	Metabolic engineering of Escherichia coli BL21 for biosynthesis of heparosan, a bioengineered heparin precursor. Metabolic Engineering, 2012, 14, 521-527.	7.0	69
30	Systems-level understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the microenvironment levels: Mechanism and application. Journal of Biotechnology, 2013, 167, 56-63.	3.8	69
31	Utilization of economical substrate-derived carbohydrates by solventogenic clostridia: pathway dissection, regulation and engineering. Current Opinion in Biotechnology, 2014, 29, 124-131.	6.6	69
32	l-Amino acid oxidases from microbial sources: types, properties, functions, and applications. Applied Microbiology and Biotechnology, 2014, 98, 1507-1515.	3.6	69
33	Structure-based engineering of histidine residues in the catalytic domain of α-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions. Journal of Biotechnology, 2013, 164, 59-66.	3.8	66
34	Synthetic redesign of central carbon and redox metabolism for high yield production of N-acetylglucosamine in Bacillus subtilis. Metabolic Engineering, 2019, 51, 59-69.	7.0	66
35	Recent advances in discovery, heterologous expression, and molecular engineering of cyclodextrin glycosyltransferase for versatile applications. Biotechnology Advances, 2014, 32, 415-428.	11.7	64
36	Ammonium acetate enhances solvent production by Clostridium acetobutylicum EA 2018 using cassava as a fermentation medium. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 1225-1232.	3.0	62

#	Article	IF	CITATIONS
37	Molecular engineering of industrial enzymes: recent advances and future prospects. Applied Microbiology and Biotechnology, 2014, 98, 23-29.	3.6	62
38	Biotechnological production of alpha-keto acids: Current status and perspectives. Bioresource Technology, 2016, 219, 716-724.	9.6	62
39	Redox-Responsive Repressor Rex Modulates Alcohol Production and Oxidative Stress Tolerance in Clostridium acetobutylicum. Journal of Bacteriology, 2014, 196, 3949-3963.	2.2	60
40	Rational Design to Improve Protein Thermostability: Recent Advances and Prospects. ChemBioEng Reviews, 2015, 2, 87-94.	4.4	59
41	Engineering <i>Yarrowia lipolytica</i> as a Chassis for <i>De Novo</i> Synthesis of Five Aromatic-Derived Natural Products and Chemicals. ACS Synthetic Biology, 2020, 9, 2096-2106.	3.8	59
42	Molecular modulation of pleiotropic regulator CcpA for glucose and xylose coutilization by solvent-producing Clostridium acetobutylicum. Metabolic Engineering, 2015, 28, 169-179.	7.0	58
43	Improved production of 2,5-furandicarboxylic acid by overexpression of 5-hydroxymethylfurfural oxidase and 5-hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60. Bioresource Technology, 2018, 247, 1184-1188.	9.6	58
44	Phage serine integrase-mediated genome engineering for efficient expression of chemical biosynthetic pathway in gas-fermenting Clostridium ljungdahlii. Metabolic Engineering, 2019, 52, 293-302.	7.0	58
45	Biocatalytic production of 2,5-furandicarboxylic acid: recent advances and future perspectives. Applied Microbiology and Biotechnology, 2020, 104, 527-543.	3.6	58
46	CAMERSâ€B: CRISPR/Cpf1 assisted multipleâ€genes editing and regulation system for <i>Bacillus subtilis</i> . Biotechnology and Bioengineering, 2020, 117, 1817-1825.	3.3	58
47	Protein and metabolic engineering for the production of organic acids. Bioresource Technology, 2017, 239, 412-421.	9.6	57
48	Refactoring Ehrlich Pathway for High-Yield 2-Phenylethanol Production in <i>Yarrowia lipolytica</i> . ACS Synthetic Biology, 2020, 9, 623-633.	3.8	55
49	CRISPR-Cas12a-Mediated Gene Deletion and Regulation in <i>Clostridium ljungdahlii</i> and Its Application in Carbon Flux Redirection in Synthesis Gas Fermentation. ACS Synthetic Biology, 2019, 8, 2270-2279.	3.8	54
50	Engineering the Substrate Transport and Cofactor Regeneration Systems for Enhancing 2′-Fucosyllactose Synthesis in <i>Bacillus subtilis</i> . ACS Synthetic Biology, 2019, 8, 2418-2427.	3.8	54
51	Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli. Journal of Biotechnology, 2009, 143, 284-287.	3.8	53
52	Synthetic biology, systems biology, and metabolic engineering of <i>Yarrowia lipolytica</i> toward a sustainable biorefinery platform. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 845-862.	3.0	53
53	Enhanced hyaluronic acid production by a two-stage culture strategy based on the modeling of batch and fed-batch cultivation of Streptococcus zooepidemicus. Bioresource Technology, 2008, 99, 8532-8536.	9.6	51
54	Functions, applications and production of 2-O-d-glucopyranosyl-l-ascorbic acid. Applied Microbiology and Biotechnology, 2012, 95, 313-320.	3.6	51

#	Article	IF	CITATIONS
55	High-level extracellular production of alkaline polygalacturonate lyase in Bacillus subtilis with optimized regulatory elements. Bioresource Technology, 2013, 146, 543-548.	9.6	51
56	Overproduction of alkaline polygalacturonate lyase in recombinant Escherichia coli by a two-stage glycerol feeding approach. Bioresource Technology, 2011, 102, 10671-10678.	9.6	50
57	CRISPRi-Guided Multiplexed Fine-Tuning of Metabolic Flux for Enhanced Lacto- <i>N</i> -neotetraose Production in <i>Bacillus subtilis</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 2477-2484.	5.2	50
58	Production of phenylpyruvic acid from l-phenylalanine using an l-amino acid deaminase from Proteus mirabilis: comparison of enzymatic and whole-cell biotransformation approaches. Applied Microbiology and Biotechnology, 2015, 99, 8391-8402.	3.6	49
59	Enhanced alcohol titre and ratio in carbon monoxide-rich off-gas fermentation of Clostridium carboxidivorans through combination of trace metals optimization with variable-temperature cultivation. Bioresource Technology, 2017, 239, 236-243.	9.6	49
60	Engineering a Glucosamine-6-phosphate Responsive <i>glmS</i> Ribozyme Switch Enables Dynamic Control of Metabolic Flux in <i>Bacillus subtilis</i> for Overproduction of <i>N</i> -Acetylglucosamine. ACS Synthetic Biology, 2018, 7, 2423-2435.	3.8	49
61	Structure-based rational design and introduction of arginines on the surface of an alkaline α-amylase from Alkalimonas amylolytica for improved thermostability. Applied Microbiology and Biotechnology, 2014, 98, 8937-8945.	3.6	48
62	P <i>gas</i> , a Low-pH-Induced Promoter, as a Tool for Dynamic Control of Gene Expression for Metabolic Engineering of Aspergillus niger. Applied and Environmental Microbiology, 2017, 83, .	3.1	48
63	Synthetic N-terminal coding sequences for fine-tuning gene expression and metabolic engineering in Bacillus subtilis. Metabolic Engineering, 2019, 55, 131-141.	7.0	48
64	Microbial production of sialic acid and sialylated human milk oligosaccharides: Advances and perspectives. Biotechnology Advances, 2019, 37, 787-800.	11.7	48
65	Developing an endogenous quorum-sensing based CRISPRi circuit for autonomous and tunable dynamic regulation of multiple targets in Streptomyces. Nucleic Acids Research, 2020, 48, 8188-8202.	14.5	46
66	Discovery of an ene-reductase for initiating flavone and flavonol catabolism in gut bacteria. Nature Communications, 2021, 12, 790.	12.8	46
67	<i>In Silico</i> Rational Design and Systems Engineering of Disulfide Bridges in the Catalytic Domain of an Alkaline α-Amylase from Alkalimonas amylolytica To Improve Thermostability. Applied and Environmental Microbiology, 2014, 80, 798-807.	3.1	45
68	Improved Production of Propionic Acid in Propionibacterium jensenii via Combinational Overexpression of Glycerol Dehydrogenase and Malate Dehydrogenase from Klebsiella pneumoniae. Applied and Environmental Microbiology, 2015, 81, 2256-2264.	3.1	45
69	Understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the level of proteomics. Scientific Reports, 2014, 4, 6951.	3.3	45
70	A dynamic pathway analysis approach reveals a limiting futile cycle in N-acetylglucosamine overproducing Bacillus subtilis. Nature Communications, 2016, 7, 11933.	12.8	45
71	A Flexible Binding Site Architecture Provides New Insights into CcpA Global Regulation in Gram-Positive Bacteria. MBio, 2017, 8, .	4.1	44
72	Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production. Bioresource Technology, 2018, 250, 642-649.	9.6	44

#	Article	IF	CITATIONS
73	Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural. Applied and Environmental Microbiology, 2017, 83, .	3.1	43
74	Synergistic improvement of N-acetylglucosamine production by engineering transcription factors and balancing redox cofactors. Metabolic Engineering, 2021, 67, 330-346.	7.0	43
75	Comparative genomics and transcriptome analysis of Aspergillus niger and metabolic engineering for citrate production. Scientific Reports, 2017, 7, 41040.	3.3	43
76	Bioconversion of l-glutamic acid to α-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing l-amino acid deaminase from Proteus mirabilis. Journal of Biotechnology, 2014, 169, 112-120.	3.8	42
77	One-step production of α-ketoglutaric acid from glutamic acid with an engineered l-amino acid deaminase from Proteus mirabilis. Journal of Biotechnology, 2013, 164, 97-104.	3.8	41
78	Improved glucosamine and N-acetylglucosamine production by an engineered Escherichia coli via step-wise regulation of dissolved oxygen level. Bioresource Technology, 2012, 110, 534-538.	9.6	40
79	The promises and challenges of fusion constructs in protein biochemistry and enzymology. Applied Microbiology and Biotechnology, 2016, 100, 8273-8281.	3.6	40
80	Heterologous expression, biochemical characterization, and overproduction of alkaline α-amylase from Bacillus alcalophilus in Bacillus subtilis. Microbial Cell Factories, 2011, 10, 77.	4.0	39
81	Structure-Based Engineering of Methionine Residues in the Catalytic Cores of Alkaline Amylase from Alkalimonas amylolytica for Improved Oxidative Stability. Applied and Environmental Microbiology, 2012, 78, 7519-7526.	3.1	39
82	Improved propionic acid production from glycerol with metabolically engineered Propionibacterium jensenii by integrating fed-batch culture with a pH-shift control strategy. Bioresource Technology, 2014, 152, 519-525.	9.6	39
83	Clostridia: a flexible microbial platform for the production of alcohols. Current Opinion in Chemical Biology, 2016, 35, 65-72.	6.1	39
84	Molecular engineering of chitinase from Bacillus sp. DAU101 for enzymatic production of chitooligosaccharides. Enzyme and Microbial Technology, 2019, 124, 54-62.	3.2	39
85	Microbial production of low molecular weight hyaluronic acid by adding hydrogen peroxide and ascorbate in batch culture of Streptococcus zooepidemicus. Bioresource Technology, 2009, 100, 362-367.	9.6	38
86	Metabolic engineering of cofactor flavin adenine dinucleotide (FAD) synthesis and regeneration in <i>Escherichia coli</i> for production of αâ€keto acids. Biotechnology and Bioengineering, 2017, 114, 1928-1936.	3.3	38
87	I-Scel-mediated scarless gene modification via allelic exchange in Clostridium. Journal of Microbiological Methods, 2015, 108, 49-60.	1.6	37
88	Metabolic engineering of acid resistance elements to improve acid resistance and propionic acid production of <i>Propionibacterium jensenii</i> . Biotechnology and Bioengineering, 2016, 113, 1294-1304.	3.3	37
89	Rewiring the Glucose Transportation and Central Metabolic Pathways for Overproduction of <i>N</i> â€Acetylglucosamine in <i>Bacillus subtilis</i> . Biotechnology Journal, 2017, 12, 1700020.	3.5	37
90	Boosting Secretion of Extracellular Protein by Escherichia coli via Cell Wall Perturbation. Applied and Environmental Microbiology, 2018, 84, .	3.1	37

#	Article	IF	CITATIONS
91	Combinatorial synthetic pathway fineâ€tuning and comparative transcriptomics for metabolic engineering of <i>Raoultella ornithinolytica</i> BF60 to efficiently synthesize 2,5â€furandicarboxylic acid. Biotechnology and Bioengineering, 2018, 115, 2148-2155.	3.3	36
92	De novo biosynthesis of rubusoside and rebaudiosides in engineered yeasts. Nature Communications, 2022, 13, .	12.8	36
93	Fusion of an Oligopeptide to the N Terminus of an Alkaline α-Amylase from Alkalimonas amylolytica Simultaneously Improves the Enzyme's Catalytic Efficiency, Thermal Stability, and Resistance to Oxidation. Applied and Environmental Microbiology, 2013, 79, 3049-3058.	3.1	35
94	Development of GRAS strains for nutraceutical production using systems and synthetic biology approaches: advances and prospects. Critical Reviews in Biotechnology, 2017, 37, 139-150.	9.0	35
95	Modular pathway engineering of key carbonâ€precursor supplyâ€pathways for improved <i>N</i> â€acetylneuraminic acid production in <i>Bacillus subtilis</i> . Biotechnology and Bioengineering, 2018, 115, 2217-2231.	3.3	35
96	Refactoring transcription factors for metabolic engineering. Biotechnology Advances, 2022, 57, 107935.	11.7	35
97	Development of a Propionibacterium-Escherichia coli Shuttle Vector for Metabolic Engineering of Propionibacterium jensenii, an Efficient Producer of Propionic Acid. Applied and Environmental Microbiology, 2013, 79, 4595-4602.	3.1	34
98	Enhanced glucosamine production by Aspergillus sp. BCRC 31742 based on the time-variant kinetics analysis of dissolved oxygen level. Bioresource Technology, 2012, 111, 507-511.	9.6	33
99	Titrating bacterial growth and chemical biosynthesis for efficient N-acetylglucosamine and N-acetylneuraminic acid bioproduction. Nature Communications, 2020, 11, 5078.	12.8	33
100	Combined overexpression of genes involved in pentose phosphate pathway enables enhanced d-xylose utilization by Clostridium acetobutylicum. Journal of Biotechnology, 2014, 173, 7-9.	3.8	32
101	Rapid Generation of Universal Synthetic Promoters for Controlled Gene Expression in Both Gas-Fermenting and Saccharolytic <i>Clostridium</i> Species. ACS Synthetic Biology, 2017, 6, 1672-1678.	3.8	32
102	Combinatorial promoter engineering of glucokinase and phosphoglucoisomerase for improved N-acetylglucosamine production in Bacillus subtilis. Bioresource Technology, 2017, 245, 1093-1102.	9.6	32
103	Synergistic Rewiring of Carbon Metabolism and Redox Metabolism in Cytoplasm and Mitochondria of <i>Aspergillus oryzae</i> for Increased <scp>I</scp> -Malate Production. ACS Synthetic Biology, 2018, 7, 2139-2147.	3.8	32
104	Modular pathway engineering of key precursor supply pathways for lacto-N-neotetraose production in Bacillus subtilis. Biotechnology for Biofuels, 2019, 12, 212.	6.2	32
105	Current advances in design and engineering strategies of industrial enzymes. Systems Microbiology and Biomanufacturing, 2021, 1, 15-23.	2.9	32
106	Toward metabolic engineering in the context of system biology and synthetic biology: advances and prospects. Applied Microbiology and Biotechnology, 2015, 99, 1109-1118.	3.6	31
107	Complete genome sequence of Clostridium carboxidivorans P7T, a syngas-fermenting bacterium capable of producing long-chain alcohols. Journal of Biotechnology, 2015, 211, 44-45.	3.8	31
108	Synthetic biology for future food: Research progress and future directions. Future Foods, 2021, 3, 100025.	5.4	31

#	Article	IF	CITATIONS
109	Recent advances in recombinant protein expression by Corynebacterium, Brevibacterium, and Streptomyces: from transcription and translation regulation to secretion pathway selection. Applied Microbiology and Biotechnology, 2013, 97, 9597-9608.	3.6	30
110	Improved production of α-ketoglutaric acid (α-KG) by a Bacillus subtilis whole-cell biocatalyst via engineering of l-amino acid deaminase and deletion of the α-KG utilization pathway. Journal of Biotechnology, 2014, 187, 71-77.	3.8	30
111	An optimal glucose feeding strategy integrated with step-wise regulation of the dissolved oxygen level improves N-acetylglucosamine production in recombinant Bacillus subtilis. Bioresource Technology, 2015, 177, 387-392.	9.6	30
112	Metabolic regulation in solventogenic clostridia: regulators, mechanisms and engineering. Biotechnology Advances, 2018, 36, 905-914.	11.7	30
113	Comparative metabolomics analysis of the key metabolic nodes in propionic acid synthesis in Propionibacterium acidipropionici. Metabolomics, 2015, 11, 1106-1116.	3.0	29
114	Comparative genomics and transcriptomics analysisâ€guided metabolic engineering of <i>Propionibacterium acidipropionici</i> for improved propionic acid production. Biotechnology and Bioengineering, 2018, 115, 483-494.	3.3	29
115	Creating an in vivo bifunctional gene expression circuit through an aptamer-based regulatory mechanism for dynamic metabolic engineering in Bacillus subtilis. Metabolic Engineering, 2019, 55, 179-190.	7.0	29
116	Cell Membrane and Electron Transfer Engineering for Improved Synthesis of Menaquinone-7 in Bacillus subtilis. IScience, 2020, 23, 100918.	4.1	29
117	One-step biosynthesis of α-ketoisocaproate from l-leucine by an Escherichia coli whole-cell biocatalyst expressing an l-amino acid deaminase from Proteus vulgaris. Scientific Reports, 2015, 5, 12614.	3.3	28
118	Significantly enhancing recombinant alkaline amylase production in Bacillus subtilis by integration of a novel mutagenesis-screening strategy with systems-level fermentation optimization. Journal of Biological Engineering, 2016, 10, 13.	4.7	28
119	Combination of phenylpyruvic acid (PPA) pathway engineering and molecular engineering of l-amino acid deaminase improves PPA production with an Escherichia coli whole-cell biocatalyst. Applied Microbiology and Biotechnology, 2016, 100, 2183-2191.	3.6	28
120	Engineering Clostridium ljungdahlii as the gas-fermenting cell factory for the production of biofuels and biochemicals. Current Opinion in Chemical Biology, 2020, 59, 54-61.	6.1	28
121	Metabolic Engineering of Gas-Fermenting <i>Clostridium ljungdahlii</i> for Efficient Co-production of Isopropanol, 3-Hydroxybutyrate, and Ethanol. ACS Synthetic Biology, 2021, 10, 2628-2638.	3.8	28
122	Site-saturation engineering of lysine 47 in cyclodextrin glycosyltransferase from Paenibacillus macerans to enhance substrate specificity towards maltodextrin for enzymatic synthesis of 2-O-d-glucopyranosyl-l-ascorbic acid (AA-2G). Applied Microbiology and Biotechnology, 2013, 97, 5851-5860.	3.6	27
123	Efficient isopropanol biosynthesis by engineered Escherichia coli using biologically produced acetate from syngas fermentation. Bioresource Technology, 2020, 296, 122337.	9.6	27
124	Current advance in biological production of short-chain organic acid. Applied Microbiology and Biotechnology, 2020, 104, 9109-9124.	3.6	27
125	Design and construction of novel biocatalyst for bioprocessing: Recent advances and future outlook. Bioresource Technology, 2021, 332, 125071.	9.6	27
126	Combinatorial metabolic engineering of Escherichia coli for de novo production of 2′-fucosyllactose. Bioresource Technology, 2022, 351, 126949.	9.6	27

#	Article	IF	CITATIONS
127	Systems Engineering of Tyrosine 195, Tyrosine 260, and Clutamine 265 in Cyclodextrin Clycosyltransferase from Paenibacillus macerans To Enhance Maltodextrin Specificity for 2- <i>O</i> - <scp>d</scp> -Glucopyranosyl- <scp>l</scp> -Ascorbic Acid Synthesis. Applied and Environmental Microbiology, 2013, 79, 672-677.	3.1	26
128	Improved propionic acid production with metabolically engineered Propionibacterium jensenii by an oxidoreduction potential-shift control strategy. Bioresource Technology, 2015, 175, 606-612.	9.6	26
129	Metabolic engineering of Corynebacterium glutamicum S9114 based on whole-genome sequencing for efficient N-acetylglucosamine synthesis. Synthetic and Systems Biotechnology, 2019, 4, 120-129.	3.7	26
130	A novel regulatory pathway consisting of a two-component system and an ABC-type transporter contributes to butanol tolerance in Clostridium acetobutylicum. Applied Microbiology and Biotechnology, 2020, 104, 5011-5023.	3.6	26
131	A Novel Dual- <i>cre</i> Motif Enables Two-Way Autoregulation of CcpA in Clostridium acetobutylicum. Applied and Environmental Microbiology, 2018, 84, .	3.1	25
132	Metabolic engineering for the production of fat-soluble vitamins: advances and perspectives. Applied Microbiology and Biotechnology, 2020, 104, 935-951.	3.6	25
133	One-Step Biosynthesis of α-Keto-γ-Methylthiobutyric Acid from L-Methionine by an Escherichia coli Whole-Cell Biocatalyst Expressing an Engineered L-Amino Acid Deaminase from Proteus vulgaris. PLoS ONE, 2014, 9, e114291.	2.5	25
134	Modeling and optimization of microbial hyaluronic acid production by <i>Streptococcus zooepidemicus</i> using radial basis function neural network coupling quantumâ€behaved particle swarm optimization algorithm. Biotechnology Progress, 2009, 25, 1819-1825.	2.6	24
135	Enzymatic transformation of 2-O-α-D-glucopyranosyl-L-ascorbic acid by α-cyclodextrin glucanotransferase from recombinant Escherichia coli. Biotechnology and Bioprocess Engineering, 2011, 16, 107-113.	2.6	24
136	Optimization of glucose feeding approaches for enhanced glucosamine and <i>N</i> -acetylglucosamine production by an engineered <i>Escherichia coli</i> . Journal of Industrial Microbiology and Biotechnology, 2012, 39, 359-365.	3.0	24
137	Pathway engineering of Propionibacterium jensenii for improved production of propionic acid. Scientific Reports, 2016, 6, 19963.	3.3	24
138	<scp>PTS</scp> regulation domainâ€containing transcriptional activator Cel <scp>R</scp> and sigma factor σ ⁵⁴ control cellobiose utilization in <scp><i>C</i></scp> <i>lostridium acetobutylicum</i> . Molecular Microbiology, 2016, 100, 289-302.	2.5	24
139	Ethanol Metabolism Dynamics in Clostridium ljungdahlii Grown on Carbon Monoxide. Applied and Environmental Microbiology, 2020, 86, .	3.1	24
140	Metabolic engineering of Escherichia coli for the production of Lacto-N-neotetraose (LNnT). Systems Microbiology and Biomanufacturing, 2021, 1, 291-301.	2.9	24
141	Comparative study on the influence of dissolved oxygen control approaches on the microbial hyaluronic acid production of Streptococcus zooepidemicus. Bioprocess and Biosystems Engineering, 2009, 32, 755-763.	3.4	23
142	Caproicibacterium amylolyticum gen. nov., sp. nov., a novel member of the family Oscillospiraceae isolated from pit clay used for making Chinese strong aroma-type liquor. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	23
143	Enzymatic transformation of 2-O-α-d-glucopyranosyl-l-ascorbic acid (AA-2G) by immobilized α-cyclodextrin glucanotransferase from recombinant Escherichia coli. Journal of Molecular Catalysis B: Enzymatic, 2011, 68, 223-229.	1.8	22
144	Iterative Saturation Mutagenesis of â^6 Subsite Residues in Cyclodextrin Glycosyltransferase from Paenibacillus macerans To Improve Maltodextrin Specificity for 2- <i>O</i> - <scp>d</scp> -Glucopyranosyl- <scp>l</scp> -Ascorbic Acid Synthesis. Applied and Environmental Microbiology, 2013, 79, 7562-7568.	3.1	22

#	Article	IF	CITATIONS
145	Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability. Applied Microbiology and Biotechnology, 2014, 98, 3997-4007.	3.6	22
146	Molecular mechanism of environmental <scp>d</scp> -xylose perception by a XylFII-LytS complex in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8235-8240.	7.1	22
147	Metabolic engineering of Escherichia coli carrying the hybrid acetone-biosynthesis pathway for efficient acetone biosynthesis from acetate. Microbial Cell Factories, 2019, 18, 6.	4.0	22
148	A roadmap to engineering antiviral natural products synthesis in microbes. Current Opinion in Biotechnology, 2020, 66, 140-149.	6.6	22
149	A review on current conventional and biotechnical approaches to enhance biosynthesis of steviol glycosides in Stevia rebaudiana. Chinese Journal of Chemical Engineering, 2021, 30, 92-104.	3.5	22
150	Secretory Expression Fine-Tuning and Directed Evolution of Diacetylchitobiose Deacetylase by Bacillus subtilis. Applied and Environmental Microbiology, 2019, 85, .	3.1	21
151	Synthetic metabolic channel by functional membrane microdomains for compartmentalized flux control. Metabolic Engineering, 2020, 59, 106-118.	7.0	21
152	New synthetic biology tools for metabolic control. Current Opinion in Biotechnology, 2022, 76, 102724.	6.6	21
153	Engineered Bacillus subtilis for the de novo production of 2′-fucosyllactose. Microbial Cell Factories, 2022, 21, .	4.0	21
154	Engineering propionibacteria as versatile cell factories for the production of industrially important chemicals: advances, challenges, and prospects. Applied Microbiology and Biotechnology, 2015, 99, 585-600.	3.6	20
155	Generation of a fully erythromycin-sensitive strain of Clostridioides difficile using a novel CRISPR-Cas9 genome editing system. Scientific Reports, 2019, 9, 8123.	3.3	20
156	Improving extracellular protein production in Escherichia coli by overexpressing D,D-carboxypeptidase to perturb peptidoglycan network synthesis and structure. Applied Microbiology and Biotechnology, 2019, 103, 793-806.	3.6	20
157	The SCIFFâ€Derived Ranthipeptides Participate in Quorum Sensing in Solventogenic Clostridia. Biotechnology Journal, 2020, 15, 2000136.	3.5	20
158	Engineering diacetylchitobiose deacetylase from Pyrococcus horikoshii towards an efficient glucosamine production. Bioresource Technology, 2021, 334, 125241.	9.6	20
159	A pathway independent multi-modular ordered control system based on thermosensors and CRISPRi improves bioproduction in <i>Bacillus subtilis</i> . Nucleic Acids Research, 2022, 50, 6587-6600.	14.5	20
160	Metabolic engineering of Aspergillus oryzae for efficient production of l -malate directly from corn starch. Journal of Biotechnology, 2017, 262, 40-46.	3.8	19
161	Microbial Production and Molecular Engineering of Industrial Enzymes. , 2017, , 151-165.		19
162	Influence of hyaluronidase addition on the production of hyaluronic acid by batch culture of Streptococcuszooepidemicus. Food Chemistry, 2008, 110, 923-926.	8.2	18

#	Article	IF	CITATIONS
163	Caproicibacterium lactatifermentans sp. nov., isolated from pit clay used for the production of Chinese strong aroma-type liquor. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	1.7	18
164	Comparative analysis of heterologous expression, biochemical characterization optimal production of an alkaline αâ€amylase from alkaliphilic <i>Alkalimonas amylolytica</i> in <i>Escherichia coli</i> and <i>Pichia pastoris</i> . Biotechnology Progress, 2013, 29, 39-47.	2.6	17
165	Carbohydrate-Binding Module–Cyclodextrin Glycosyltransferase Fusion Enables Efficient Synthesis of 2- <i>O</i> - <scp>d</scp> -Glucopyranosyl- <scp>l</scp> -Ascorbic Acid with Soluble Starch as the Glycosyl Donor. Applied and Environmental Microbiology, 2013, 79, 3234-3240.	3.1	17
166	Development of an inducible transposon system for efficient random mutagenesis in <i>Clostridium acetobutylicum</i> . FEMS Microbiology Letters, 2016, 363, fnw065.	1.8	17
167	Roles of three AbrBs in regulating two-phase Clostridium acetobutylicum fermentation. Applied Microbiology and Biotechnology, 2016, 100, 9081-9089.	3.6	17
168	High-yield and plasmid-free biocatalytic production of 5-methylpyrazine-2-carboxylic acid by combinatorial genetic elements engineering and genome engineering of Escherichia coli. Enzyme and Microbial Technology, 2020, 134, 109488.	3.2	17
169	Enzyme Assembly for Compartmentalized Metabolic Flux Control. Metabolites, 2020, 10, 125.	2.9	17
170	Combining CRISPR–Cpf1 and Recombineering Facilitates Fast and Efficient Genome Editing in <i>Escherichia coli</i> . ACS Synthetic Biology, 2022, 11, 1897-1907.	3.8	17
171	Transporter engineering and enzyme evolution for pyruvate production from d/l-alanine with a whole-cell biocatalyst expressing l-amino acid deaminase from Proteus mirabilis. RSC Advances, 2016, 6, 82676-82684.	3.6	16
172	Improving the performance of solventogenic clostridia by reinforcing the biotin synthetic pathway. Metabolic Engineering, 2016, 35, 121-128.	7.0	16
173	Biological production of l-malate: recent advances and future prospects. World Journal of Microbiology and Biotechnology, 2018, 34, 6.	3.6	16
174	Systems metabolic engineering of <i>Bacillus subtilis</i> for efficient biosynthesis of 5â€methyltetrahydrofolate. Biotechnology and Bioengineering, 2020, 117, 2116-2130.	3.3	16
175	Production of proteins and commodity chemicals using engineered <i>Bacillus subtilis</i> platform strain. Essays in Biochemistry, 2021, 65, 173-185.	4.7	16
176	Metabolic engineering for amino-, oligo-, and polysugar production in microbes. Applied Microbiology and Biotechnology, 2016, 100, 2523-2533.	3.6	15
177	Rational molecular engineering of <scp>l</scp> -amino acid deaminase for production of α-ketoisovaleric acid from <scp>l</scp> -valine by Escherichia coli. RSC Advances, 2017, 7, 6615-6621.	3.6	15
178	Engineering of L-amino acid deaminases for the production of α-keto acids from L-amino acids. Bioengineered, 2019, 10, 43-51.	3.2	15
179	Synthetic repetitive extragenic palindromic (REP) sequence as an efficient mRNA stabilizer for protein production and metabolic engineering in prokaryotic cells. Biotechnology and Bioengineering, 2019, 116, 5-18.	3.3	15
180	Assembly of pathway enzymes by engineering functional membrane microdomain components for improved N-acetylglucosamine synthesis in Bacillus subtilis. Metabolic Engineering, 2020, 61, 96-105.	7.0	15

#	Article	IF	CITATIONS
181	Enhancement of Hyaluronic Acid Production by Batch Culture of Streptococcus zooepidemicus with N-Dodecane as an Oxygen Vector. Journal of Microbiology and Biotechnology, 2009, 19, 596-603.	2.1	15
182	Influence of culture modes on the microbial production of hyaluronic acid by Streptococcus zooepidemicus. Biotechnology and Bioprocess Engineering, 2008, 13, 269-273.	2.6	14
183	Improving maltodextrin specificity for enzymatic synthesis of 2-O-d-glucopyranosyl-l-ascorbic acid by site-saturation engineering of subsite-3 in cyclodextrin glycosyltransferase from Paenibacillus macerans. Journal of Biotechnology, 2013, 166, 198-205.	3.8	14
184	A new approach for efficient synthesis of phenyllactic acid from L-phenylalanine: Pathway design and cofactor engineering. Journal of Food Biochemistry, 2018, 42, e12584.	2.9	14
185	Applications of CRISPR in a Microbial Cell Factory: From Genome Reconstruction to Metabolic Network Reprogramming. ACS Synthetic Biology, 2020, 9, 2228-2238.	3.8	14
186	Biocatalytic synthesis of lactosucrose using a recombinant thermostable β-fructofuranosidase from <i>Arthrobacter</i> sp. 10138. Bioengineered, 2020, 11, 416-427.	3.2	14
187	Recent advances and challenges in microbial production of human milk oligosaccharides. Systems Microbiology and Biomanufacturing, 2021, 1, 1-14.	2.9	14
188	Conferring thermotolerant phenotype to wildâ€ŧype <i>Yarrowia lipolytica</i> improves cell growth and erythritol production. Biotechnology and Bioengineering, 2021, 118, 3117-3127.	3.3	14
189	Multilayer Genetic Circuits for Dynamic Regulation of Metabolic Pathways. ACS Synthetic Biology, 2021, 10, 1587-1597.	3.8	14
190	Synthetic Biology Toolkits and Metabolic Engineering Applied in <i>Corynebacterium glutamicum</i> for Biomanufacturing. ACS Synthetic Biology, 2021, 10, 3237-3250.	3.8	14
191	Engineered yeast for efficient de novo synthesis of 7â€dehydrocholesterol. Biotechnology and Bioengineering, 2022, 119, 1278-1289.	3.3	14
192	Production of α-ketoisocaproate via free-whole-cell biotransformation by Rhodococcus opacus DSM 43250 with l-leucine as the substrate. Enzyme and Microbial Technology, 2011, 49, 321-325.	3.2	13
193	High-level expression, purification, and enzymatic characterization of truncated poly(vinyl alcohol) dehydrogenase in methylotrophic yeast Pichia pastoris. Applied Microbiology and Biotechnology, 2013, 97, 1113-1120.	3.6	13
194	Study on pressure sensitivity of tight sandstone and its influence on reservoir characteristics. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 2671-2677.	2.3	13
195	Combinatorial engineering for improved menaquinone-4 biosynthesis in Bacillus subtilis. Enzyme and Microbial Technology, 2020, 141, 109652.	3.2	13
196	High Efficiency Preparation and Characterization of Intact Poly(Vinyl Alcohol) Dehydrogenase from Sphingopyxis sp.113P3 in Escherichia coli by Inclusion Bodies Renaturation. Applied Biochemistry and Biotechnology, 2014, 172, 2540-2551.	2.9	12
197	Efficient expression of cyclodextrin glycosyltransferase from Geobacillus stearothermophilus in Escherichia coli by promoter engineering and downstream box evolution. Journal of Biotechnology, 2018, 266, 77-83.	3.8	12
198	Adsorption characteristics of clay minerals in shale. Petroleum Science and Technology, 2018, 36, 108-114.	1.5	12

#	Article	IF	CITATIONS
199	Towards semi-synthetic microbial communities: enhancing soy sauce fermentation properties in B. subtilis co-cultures. Microbial Cell Factories, 2019, 18, 101.	4.0	12
200	The Metabolism of Clostridium ljungdahlii in Phosphotransacetylase Negative Strains and Development of an Ethanologenic Strain. Frontiers in Bioengineering and Biotechnology, 2020, 8, 560726.	4.1	12
201	Metabolic engineering for the synthesis of steviol glycosides: current status and future prospects. Applied Microbiology and Biotechnology, 2021, 105, 5367-5381.	3.6	12
202	Developing rapid growing Bacillus subtilis for improved biochemical and recombinant protein protein production. Metabolic Engineering Communications, 2020, 11, e00141.	3.6	12
203	Biocatalytic Production of Glucosamine from N-Acetylglucosamine by Diacetylchitobiose Deacetylase. Journal of Microbiology and Biotechnology, 2018, 28, 1850-1858.	2.1	12
204	Constructing a methanol-dependent Bacillus subtilis by engineering the methanol metabolism. Journal of Biotechnology, 2022, 343, 128-137.	3.8	12
205	Modular remodeling of sterol metabolism for overproduction of 7-dehydrocholesterol in engineered yeast. Bioresource Technology, 2022, 360, 127572.	9.6	12
206	Fusion of Self-Assembling Amphipathic Oligopeptides with Cyclodextrin Glycosyltransferase Improves 2- <i>O</i> - <scp>d</scp> -Glucopyranosyl- <scp>l</scp> -Ascorbic Acid Synthesis with Soluble Starch as the Glycosyl Donor. Applied and Environmental Microbiology, 2014, 80, 4717-4724.	3.1	11
207	Synthesis of a hierarchical cobalt sulfide/cobalt basic salt nanocomposite via a vapor-phase hydrothermal method as an electrode material for supercapacitor. New Journal of Chemistry, 2017, 41, 12147-12152.	2.8	11
208	Interactive Regulation of Formate Dehydrogenase during CO ₂ Fixation in Gas-Fermenting Bacteria. MBio, 2020, 11, .	4.1	11
209	Structure-Guided Systems-Level Engineering of Oxidation-Prone Methionine Residues in Catalytic Domain of an Alkaline α-Amylase from Alkalimonas amylolytica for Significant Improvement of Both Oxidative Stability and Catalytic Efficiency. PLoS ONE, 2013, 8, e57403.	2.5	11
210	Combinatorial Fine-tuning of Phospholipase DExpression by Bacillus subtilis WB600for the Production of Phosphatidylserine. Journal of Microbiology and Biotechnology, 2018, 28, 2046-2056.	2.1	11
211	Engineering of Synthetic Multiplexed Pathways for High-Level <i>N</i> -Acetylneuraminic Acid Bioproduction. Journal of Agricultural and Food Chemistry, 2021, 69, 14868-14877.	5.2	11
212	Combinatorial Fine-Tuning of GNA1 and GlmS Expression by 5'-Terminus Fusion Engineering Leads to Overproduction of N-Acetylglucosamine in <i>Bacillus subtilis</i> . Biotechnology Journal, 2019, 14, 1800264.	3.5	10
213	Two-Step Production of Phenylpyruvic Acid from L-Phenylalanine by Growing and Resting Cells of Engineered Escherichia coli: Process Optimization and Kinetics Modeling. PLoS ONE, 2016, 11, e0166457.	2.5	10
214	Combinatorial Methylerythritol Phosphate Pathway Engineering and Process Optimization for Increased Menaquinone-7 Synthesis in <i>Bacillus subtilis</i> . Journal of Microbiology and Biotechnology, 2020, 30, 762-769.	2.1	10
215	Protein acetylation-mediated cross regulation of acetic acid and ethanol synthesis in the gas-fermenting Clostridium ljungdahlii. Journal of Biological Chemistry, 2022, 298, 101538.	3.4	10
216	Structureâ€based replacement of methionine residues at the catalytic domains with serine significantly improves the oxidative stability of alkaline amylase from alkaliphilic <i>Alkalimonas amylolytica</i> . Biotechnology Progress, 2012, 28, 1271-1277.	2.6	9

#	Article	IF	CITATIONS
217	Biosynthesis of 2-O-d-glucopyranosyl-l-ascorbic acid from maltose by an engineered cyclodextrin glycosyltransferase from Paenibacillus macerans. Carbohydrate Research, 2013, 382, 101-107.	2.3	9
218	Integrating error-prone PCR and DNA shuffling as an effective molecular evolution strategy for the production of α-ketoglutaric acid by <scp>l</scp> -amino acid deaminase. RSC Advances, 2016, 6, 46149-46158.	3.6	9
219	Analytical modeling of mercury injection in high-rank coalbed methane reservoirs based on pores and microfractures: a case study of the upper carboniferous Taiyuan Formation in the Heshun block of the Qinshui Basin, central China. Journal of Geophysics and Engineering, 2017, 14, 197-211.	1.4	9
220	Metabolic engineering for the production of chitooligosaccharides: advances and perspectives. Emerging Topics in Life Sciences, 2018, 2, 377-388.	2.6	9
221	Pathway Engineering of <i>Bacillus subtilis</i> for Enhanced <i>N</i> â€Acetylneuraminic Acid Production via Wholeâ€Cell Biocatalysis. Biotechnology Journal, 2019, 14, e1800682.	3.5	9
222	Towards next-generation model microorganism chassis for biomanufacturing. Applied Microbiology and Biotechnology, 2020, 104, 9095-9108.	3.6	9
223	Development of a DNA double-strand break-free base editing tool in Corynebacterium glutamicum for genome editing and metabolic engineering. Metabolic Engineering Communications, 2020, 11, e00135.	3.6	9
224	High level production of diacetylchitobiose deacetylase by refactoring genetic elements and cellular metabolism. Bioresource Technology, 2021, 341, 125836.	9.6	9
225	Engineered Microbial Cell Factories for Sustainable Production of L-Lactic Acid: A Critical Review. Fermentation, 2022, 8, 279.	3.0	9
226	Effects of carbon sources and feeding strategies on heparosan production by Escherichia coli K5. Bioprocess and Biosystems Engineering, 2012, 35, 1209-1218.	3.4	8
227	Development and optimization of <i>N</i> â€acetylneuraminic acid biosensors in <i>Bacillus subtilis</i> . Biotechnology and Applied Biochemistry, 2020, 67, 693-705.	3.1	8
228	The elucidation of phosphosugar stress response in <i>Bacillus subtilis</i> guides strain engineering for high <i>N</i> â€acetylglucosamine production. Biotechnology and Bioengineering, 2021, 118, 383-396.	3.3	8
229	Recent advances and prospects in purification and heterologous expression of lactoferrin. , 2022, 1, 58-67.		8
230	Control of solvent production by sigmaâ€54 factor and the transcriptional activator AdhR in <i>Clostridium beijerinckii</i> . Microbial Biotechnology, 2020, 13, 328-338.	4.2	7
231	Synergetic engineering of central carbon and nitrogen metabolism for the production ofNâ€acetylglucosamine inBacillus subtilis. Biotechnology and Applied Biochemistry, 2020, 67, 123-132.	3.1	7
232	Cell-free synthesis system-assisted pathway bottleneck diagnosis and engineering in Bacillus subtilis. Synthetic and Systems Biotechnology, 2020, 5, 131-136.	3.7	7
233	Food synthetic biology-driven protein supply transition: From animal-derived production to microbial fermentation. Chinese Journal of Chemical Engineering, 2021, 30, 29-36.	3.5	7
234	Synthetic yeast brews neuroactive compounds. Nature Chemical Biology, 2021, 17, 8-9.	8.0	7

#	Article	IF	CITATIONS
235	Engineering a ComA Quorum-Sensing circuit to dynamically control the production of Menaquinone-4 in Bacillus subtilis. Enzyme and Microbial Technology, 2021, 147, 109782.	3.2	7
236	Inducible Population Quality Control of Engineered <i>Bacillus subtilis</i> for Improved <i>N</i> -Acetylneuraminic Acid Biosynthesis. ACS Synthetic Biology, 2021, 10, 2197-2209.	3.8	7
237	Genetically Encoded Biosensors and Their Applications in the Development of Microbial Cell Factories. , 2020, , 53-73.		7
238	Modelâ€driven design of synthetic Nâ€ŧerminal coding sequences for regulating gene expression in yeast and bacteria. Biotechnology Journal, 2022, 17, e2100655.	3.5	7
239	Combinatorial pathway engineering of Bacillus subtilis for production of structurally defined and homogeneous chitooligosaccharides. Metabolic Engineering, 2022, 70, 55-66.	7.0	7
240	Model-based dynamic engineering of Escherichia coli for N-acetylglucosamine overproduction. Biotechnology Notes, 2022, 3, 15-24.	1.2	7
241	Construction of Multiscale Genome-Scale Metabolic Models: Frameworks and Challenges. Biomolecules, 2022, 12, 721.	4.0	7
242	Modeling and optimization of cutinase production by recombinant Escherichia coli based on statistical experimental designs. Korean Journal of Chemical Engineering, 2010, 27, 1233-1238.	2.7	6
243	Biotransformation and chiral resolution of d , l â€alanine into pyruvate and d â€alanine with a wholeâ€cell biocatalyst expressing l â€amino acid deaminase. Biotechnology and Applied Biochemistry, 2020, 67, 668-676.	3.1	6
244	Ferrous-Iron-Activated Transcriptional Factor AdhR Regulates Redox Homeostasis in <i>Clostridium beijerinckii</i> . Applied and Environmental Microbiology, 2020, 86, .	3.1	6
245	Functional dissection and modulation of the BirA protein for improved autotrophic growth of gasâ€fermenting <i>ClostridiumÂljungdahlii</i> . Microbial Biotechnology, 2021, 14, 2072-2089.	4.2	6
246	Screening of gamma-aminobutyric acid-producing lactic acid bacteria and the characteristic of glutamate decarboxylase from Levilactobacillus brevis F109-MD3 isolated from kimchi. Journal of Applied Microbiology, 2022, 132, 1967-1977.	3.1	6
247	Improving Aspergillus niger seed preparation and citric acid production by morphology controlling-based semicontinuous cultivation. Biochemical Engineering Journal, 2021, 174, 108102.	3.6	6
248	Engineering of Biosynthesis Pathway and NADPH Supply for Improved L-5-Methyltetrahydrofolate Production by <i>Lactococcus lactis</i> . Journal of Microbiology and Biotechnology, 2021, 31, 154-162.	2.1	6
249	Tuning the transcription and translation of L-amino acid deaminase in Escherichia coli improves α-ketoisocaproate production from L-leucine. PLoS ONE, 2017, 12, e0179229.	2.5	6
250	Chitin deacetylase: from molecular structure to practical applications. Systems Microbiology and Biomanufacturing, 2022, 2, 271-284.	2.9	6
251	The methane adsorption characteristics of marine shale. Petroleum Science and Technology, 2017, 35, 1799-1805.	1.5	5
	Blue-light-excited narrowing red photoluminescence in lead-free double perovskite		

252 Cs_{2â[°]<i>x</i>}K_{<i>x</i>}Ag_{0.6}Na_{0.4}In_{0.8}Bi_{0.8}Ag</sub>6á[°]
with cryogenic effects. Inorganic Chemistry Frontiers, 2022, 9, 1879-1889.

#	Article	IF	CITATIONS
253	Combinatorial Metabolic Engineering and Enzymatic Catalysis Enable Efficient Production of Colanic Acid. Microorganisms, 2022, 10, 877.	3.6	5
254	Construction and Optimization of the de novo Biosynthesis Pathway of Mogrol in Saccharomyces Cerevisiae. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	4.1	5
255	Comparative study of L-phenylalanine production in the growing and stationary phases during high cell density cultivation of an auxotrophic Escherichia coli. Biotechnology and Bioprocess Engineering, 2011, 16, 916-922.	2.6	4
256	Overproduction of a truncated poly (vinyl alcohol) dehydrogenase in recombinant Pichia pastoris by low-temperature induction strategy and related mechanism analysis. Bioprocess and Biosystems Engineering, 2013, 36, 1095-1103.	3.4	4
257	Enzyme Engineering and Industrial Bioprocess. , 2019, , 165-188.		4
258	Synthetic biology-driven microbial production of folates: Advances and perspectives. Bioresource Technology, 2021, 324, 124624.	9.6	4
259	Enzymatic production of N-acetylneuraminic acid: advances and perspectives. Systems Microbiology and Biomanufacturing, 2022, 2, 130-146.	2.9	4
260	Semi-rational design of L-amino acid deaminase for production of pyruvate and d-alanine by Escherichia coli whole-cell biocatalyst. Amino Acids, 2021, 53, 1361-1371.	2.7	4
261	Enhanced 2,5-Furandicarboxylic Acid (FDCA) Production in BF60 by Manipulation of the Key Genes in FDCA Biosynthesis Pathway. Journal of Microbiology and Biotechnology, 2018, 28, 1999-2008.	2.1	4
262	Microscopy imaging of living cells in metabolic engineering. Trends in Biotechnology, 2022, 40, 752-765.	9.3	4
263	High-Level 5-Methyltetrahydrofolate Bioproduction in <i>Bacillus subtilis</i> by Combining Modular Engineering and Transcriptomics-Guided Global Metabolic Regulation. Journal of Agricultural and Food Chemistry, 2022, 70, 5849-5859.	5.2	4
264	Statistical model based optimization of spore production by solid-state culture of <i>Beauveria bassiana</i> . Biocontrol Science and Technology, 2010, 20, 1087-1095.	1.3	3
265	Roles of tryptophan residue and disulfide bond in the variable lid region of oxidized polyvinyl alcohol hydrolase. Biochemical and Biophysical Research Communications, 2014, 452, 509-514.	2.1	3
266	Fermentation Optimization and Unstructured Kinetic Model for Cellulase Production by Rhizopus stolonifer var. reflexus TP-02 on Agriculture By-Products. Applied Biochemistry and Biotechnology, 2015, 177, 1589-1606.	2.9	3
267	The Small RNA sr8384 Is a Crucial Regulator of Cell Growth in Solventogenic Clostridia. Applied and Environmental Microbiology, 2020, 86, .	3.1	3
268	Enzyme assembly guided by SPFHâ€induced functional inclusion bodies for enhanced cascade biocatalysis. Biotechnology and Bioengineering, 2020, 117, 1446-1457.	3.3	3
269	Efficient Bioproduction of Human Milk Alpha-Lactalbumin in <i>Komagataella phaffii</i> . Journal of Agricultural and Food Chemistry, 2022, 70, 2664-2672.	5.2	3
270	Advances and prospects of transcriptionâ€factorâ€based biosensors in highâ€ŧhroughput screening for cell factories construction. , 2022, 1, 135-147.		3

#	Article	IF	CITATIONS
271	Statistical modeling and optimization for enhanced hyaluronic acid production by batch culture of Sreptococcus zooepidemicus via the supplement of uracil. Frontiers of Chemical Engineering in China, 2009, 3, 351-356.	0.6	2
272	Biochemical characterization and high-level production of oxidized polyvinyl alcohol hydrolase from Sphingopyxis sp. 113P3 expressed in methylotrophic Pichia pastoris. Bioprocess and Biosystems Engineering, 2014, 37, 777-782.	3.4	2
273	Cloning, expression, and characterization of a novel sialidase from <i>Brevibacterium casei</i> . Biotechnology and Applied Biochemistry, 2017, 64, 195-200.	3.1	2
274	Systems biology, synthetic biology, and metabolic engineering. , 2020, , 1-31.		2
275	Systems and synthetic metabolic engineering for production of biochemicals. , 2020, , 207-235.		2
276	Directed Evolution of Artificial Metalloenzymes in Whole Cells. Angewandte Chemie, 2022, 134, e202110519.	2.0	2
277	CsPbBr ₃ /Cs ₂ SiF ₆ :Mn ⁴⁺ /2ZnS/Al Rivet Nanostructured Perovskites with Dual-Wavelength Emission for Flexible White Electroluminescence. ACS Applied Nano Materials, 2022, 5, 3743-3755.	5.0	2
278	Biosynthesis of Guanidinoacetate by Bacillus subtilis Whole-Cell Catalysis. Fermentation, 2022, 8, 116.	3.0	2
279	Screening, Optimization and Assembly of Key Pathway Enzymes in Metabolic Engineering. , 2019, , 167-176.		1
280	Enhanced Hyaluronic Acid Production ofStreptococcus zooepidemicusby Shifting Dissolved Oxygen Level Based on Broth Rheology and Oxygen Mass Transfer Characteristics. Food Biotechnology, 2009, 23, 148-161.	1.5	0
281	Cover Image, Volume 116, Number 1, January 2019. Biotechnology and Bioengineering, 2019, 116, ii.	3.3	0
282	Special issue (67:4): Synthetic and engineered enzymes for biocatalysis and biotransformation. Biotechnology and Applied Biochemistry, 2020, 67, 461-462.	3.1	0
283	Microbial Production of Oligosaccharides and Polysaccharides. , 2019, , 75-91.		0
284	Microbial Production of Functional Organic Acids. , 2019, , 45-73.		0
285	Immobilization of the engineered Raoultella ornithinolytica BF60 for biocatalytic synthesis of 2, 5-furandicarboxylic acid. Journal of Microbiology and Biotechnology, 2020, , .	2.1	0

Analysis and modeling tools of metabolic flux. , 2022, , 45-68.