List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7027363/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Continuous-flow syntheses of alloy nanoparticles. Materials Horizons, 2022, 9, 547-558.	12.2	17
2	Phase Control of Solid-Solution Nanoparticles beyond the Phase Diagram for Enhanced Catalytic Properties. ACS Materials Au, 2022, 2, 110-116.	6.0	4
3	Carbon-supported WO _{<i>x</i>} –Ru-based catalysts for the selective hydrogenolysis of glycerol to 1,2-propanediol. Catalysis Science and Technology, 2022, 12, 259-272.	4.1	15
4	Noble-Metal High-Entropy-Alloy Nanoparticles: Atomic-Level Insight into the Electronic Structure. Journal of the American Chemical Society, 2022, 144, 3365-3369.	13.7	94
5	Crystal Structure Control of Binary and Ternary Solid-Solution Alloy Nanoparticles with a Face-Centered Cubic or Hexagonal Close-Packed Phase. Journal of the American Chemical Society, 2022, 144, 4224-4232.	13.7	40
6	Quantitative Characterization of the Thermally Driven Alloying State in Ternary Ir–Pd–Ru Nanoparticles. ACS Nano, 2022, 16, 1612-1624.	14.6	5
7	Compositional dependence of structures and hydrogen evolution reaction activity of platinum-group-metal quinary RuRhPdIrPt alloy nanoparticles. Chemical Communications, 2022, 58, 6421-6424.	4.1	5
8	The Effect of Ru Precursor and Support on the Hydrogenation of Aromatic Aldehydes/Ketones to Alcohols. ChemCatChem, 2022, 14, .	3.7	1
9	Continuous-Flow Reactor Synthesis for Homogeneous 1 nm-Sized Extremely Small High-Entropy Alloy Nanoparticles. Journal of the American Chemical Society, 2022, 144, 11525-11529.	13.7	60
10	Boosting reverse water-gas shift reaction activity of Pt nanoparticles through light doping of W. Journal of Materials Chemistry A, 2021, 9, 15613-15617.	10.3	17
11	Efficient overall water splitting in acid with anisotropic metal nanosheets. Nature Communications, 2021, 12, 1145.	12.8	124
12	Enhanced Hydrogenation Catalytic Activity of Ruthenium Nanoparticles by Solid‧olution Alloying with Molybdenum. European Journal of Inorganic Chemistry, 2021, 2021, 1186-1189.	2.0	3
13	Highly Stable and Active Solidâ€Solutionâ€Alloy Threeâ€Way Catalyst by Utilizing Configurationalâ€Entropy Effect. Advanced Materials, 2021, 33, e2005206.	21.0	22
14	Phase Control of Noble Monometallic and Alloy Nanomaterials by Chemical Reduction Methods. ChemPlusChem, 2021, 86, 504-519.	2.8	9
15	Cu–Pd–B Alloy Nanoparticles Synthesized by External Boron Doping Method. Chemistry Letters, 2021, 50, 611-614.	1.3	1
16	First Observation of Superconductivity in Molybdenum–Ruthenium–Carbon Alloy Nanoparticles. Chemistry Letters, 2021, 50, 596-598.	1.3	1
17	Investigation of microstructure and hydrogen absorption properties of bulk immiscible AgRh alloy nanoparticles. Journal of Alloys and Compounds, 2021, 869, 159268.	5.5	2
18	Investigation of Local Structure and Enhanced Thermal Stability of Ir-Doped PdRu Nanoparticles for Three-Way Catalytic Applications. Journal of Physical Chemistry C, 2021, 125, 20583-20591.	3.1	3

#	Article	IF	CITATIONS
19	First synthesis of air-stable NiZn homogeneous alloy nanoparticles through chemical reduction. Materials Advances, 2021, 2, 684-687.	5.4	1
20	Ni@onion-like carbon and Co@amorphous carbon: control of carbon structures by metal ion species in MOFs. Chemical Communications, 2021, 57, 5897-5900.	4.1	4
21	Nonequilibrium Flow-Synthesis of Solid-Solution Alloy Nanoparticles: From Immiscible Binary to High-Entropy Alloys. Journal of Physical Chemistry C, 2021, 125, 458-463.	3.1	18
22	Quantum Size Effect Probed by NMR Measurements. Creative Economy, 2021, , 215-230.	0.1	0
23	Total x-ray scattering setup for crystalline particles at SPring-8 BL15XU NIMS beamline. Review of Scientific Instruments, 2021, 92, 113905.	1.3	0
24	Discovery of face-centred cubic Os nanoparticles. Chemical Communications, 2020, 56, 372-374.	4.1	20
25	Rational Synthesis for a Noble Metal Carbide. Journal of the American Chemical Society, 2020, 142, 1247-1253.	13.7	15
26	New Aspects of Platinum Group Metalâ€Based Solidâ€Solution Alloy Nanoparticles: Binary to Highâ€Entropy Alloys. Chemistry - A European Journal, 2020, 26, 5105-5130.	3.3	41
27	Significant Enhancement of Hydrogen Evolution Reaction Activity by Negatively Charged Pt through Light Doping of W. Journal of the American Chemical Society, 2020, 142, 17250-17254.	13.7	103
28	On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles. Chemical Science, 2020, 11, 12731-12736.	7.4	142
29	Platinum-Group-Metal High-Entropy-Alloy Nanoparticles. Journal of the American Chemical Society, 2020, 142, 13833-13838.	13.7	223
30	Crystalline to amorphous transformation in solid-solution alloy nanoparticles induced by boron doping. Chemical Communications, 2020, 56, 12941-12944.	4.1	8
31	Statistical Evaluation of the Solid-Solution State in Ternary Nanoalloys. Journal of Physical Chemistry C, 2020, 124, 21843-21852.	3.1	2
32	Synthesis of Mo and Ru solid-solution alloy NPs and their hydrogen evolution reaction activity. Chemical Communications, 2020, 56, 14475-14478.	4.1	23
33	Frontispiece: New Aspects of Platinum Group Metalâ€Based Solidâ€Solution Alloy Nanoparticles: Binary to Highâ€Entropy Alloys. Chemistry - A European Journal, 2020, 26, .	3.3	0
34	Hydrogen absorption and desorption on Rh nanoparticles revealed by <i>in situ</i> dispersive X-ray absorption fine structure spectroscopy. RSC Advances, 2020, 10, 19751-19758.	3.6	0
35	Chemoselective hydrogenation of heteroarenes and arenes by Pd–Ru–PVP under mild conditions. RSC Advances, 2020, 10, 44191-44195.	3.6	11
36	Magnetic-Field Dependence of Novel Gap Behavior Related to the Quantum-Size Effect. Journal of the Physical Society of Japan, 2020, 89, 095002.	1.6	2

#	Article	IF	CITATIONS
37	Investigation of selective chemisorption of fcc and hcp Ru nanoparticles using X-ray photoelectron spectroscopy analysis. Journal of Catalysis, 2019, 380, 247-253.	6.2	5
38	Observation of the Formation Processes of Hexagonal Close-packed and Face-centered Cubic Ru Nanoparticles. Chemistry Letters, 2019, 48, 1062-1064.	1.3	11
39	Correlation between the electronic/local structure and CO-oxidation activity of Pd _x Ru _{1â^x} alloy nanoparticles. Nanoscale Advances, 2019, 1, 546-553.	4.6	12
40	Emergence of high ORR activity through controlling local density-of-states by alloying immiscible Au and Ir. Chemical Science, 2019, 10, 652-656.	7.4	50
41	Solid-solution alloy nanoparticles of a combination of immiscible Au and Ru with a large gap of reduction potential and their enhanced oxygen evolution reaction performance. Chemical Science, 2019, 10, 5133-5137.	7.4	48
42	Hydrogen in Palladium and Storage Properties of Related Nanomaterials: Size, Shape, Alloying, and Metalâ€Organic Framework Coating Effects. ChemPhysChem, 2019, 20, 1158-1176.	2.1	80
43	Synchrotron-radiation-based Mössbauer absorption spectroscopy with high resonant energy nuclides. Hyperfine Interactions, 2019, 240, 1.	0.5	2
44	Solidâ€ s olution Alloy Nanoparticles of the Immiscible Iridium–Copper System with a Wide Composition Range for Enhanced Electrocatalytic Applications. Angewandte Chemie, 2018, 130, 4595-4599.	2.0	13
45	Selective control of fcc and hcp crystal structures in Au–Ru solid-solution alloy nanoparticles. Nature Communications, 2018, 9, 510.	12.8	90
46	Solidâ€Solution Alloy Nanoparticles of the Immiscible Iridium–Copper System with a Wide Composition Range for Enhanced Electrocatalytic Applications. Angewandte Chemie - International Edition, 2018, 57, 4505-4509.	13.8	86
47	Size effects on rhodium nanoparticles related to hydrogen-storage capability. Physical Chemistry Chemical Physics, 2018, 20, 15183-15191.	2.8	11
48	Crystal Structure-dependent Thermal Stability and Catalytic Performance of AuRu3 Solid-solution Alloy Nanoparticles. Chemistry Letters, 2018, 47, 559-561.	1.3	8
49	Electronic Structure Evolution with Composition Alteration of RhxCuy Alloy Nanoparticles. Scientific Reports, 2017, 7, 41264.	3.3	12
50	Firstâ€Principles Calculation, Synthesis, and Catalytic Properties of Rh u Alloy Nanoparticles. Chemistry - A European Journal, 2017, 23, 57-60.	3.3	26
51	Stacking fault density and bond orientational order of fcc ruthenium nanoparticles. Applied Physics Letters, 2017, 111, 253101.	3.3	8
52	Facile Synthesis of Size-controlled Rh Nanoparticles via Microwave-assisted Alcohol Reduction and Their Catalysis of CO Oxidation. Chemistry Letters, 2017, 46, 1254-1257.	1.3	16
53	A Route for Phase Control in Metal Nanoparticles: A Potential Strategy to Create Advanced Materials. Advanced Materials, 2016, 28, 1129-1142.	21.0	72
54	Metal Nanoparticles: A Route for Phase Control in Metal Nanoparticles: A Potential Strategy to Create Advanced Materials (Adv. Mater. 6/2016). Advanced Materials, 2016, 28, 978-978.	21.0	0

#	Article	IF	CITATIONS
55	Recent progress in the structure control of Pd–Ru bimetallic nanomaterials. Science and Technology of Advanced Materials, 2016, 17, 583-596.	6.1	49
56	Size dependence of structural parameters in fcc and hcp Ru nanoparticles, revealed by Rietveld refinement analysis of high-energy X-ray diffraction data. Scientific Reports, 2016, 6, 31400.	3.3	50
57	Origin of the catalytic activity of face-centered-cubic ruthenium nanoparticles determined from an atomic-scale structure. Physical Chemistry Chemical Physics, 2016, 18, 30622-30629.	2.8	39
58	A Synthetic Pseudo-Rh: NOx Reduction Activity and Electronic Structure of Pd–Ru Solid-solution Alloy Nanoparticles. Scientific Reports, 2016, 6, 28265.	3.3	44
59	Structural studies of metal nanoparticles using high-energy x-ray diffraction. AIP Conference Proceedings, 2016, , .	0.4	5
60	Dual Lewis Acidic/Basic Pd _{0.5} Ru _{0.5} –Poly(<i>N</i> â€vinylâ€2â€pyrrolidone) Alloyed Nanoparticle: Outstanding Catalytic Activity and Selectivity in Suzuki–Miyaura Crossâ€Coupling Reaction. ChemCatChem, 2015, 7, 3887-3894.	3.7	25
61	Creation of Novel Solid-Solution Alloy Nanoparticles on the Basis of Density-of-States Engineering by Interelement Fusion. Accounts of Chemical Research, 2015, 48, 1551-1559.	15.6	107
62	Hybrid materials of Ni NP@MOF prepared by a simple synthetic method. Chemical Communications, 2015, 51, 12463-12466.	4.1	70
63	The valence band structure of AgxRh1–x alloy nanoparticles. Applied Physics Letters, 2014, 105, .	3.3	27
64	Systematic Study of the Hydrogen Storage Properties and the CO-oxidizing Abilities of Solid Solution Alloy Nanoparticles in an Immiscible Pd–Ru System. Springer Theses, 2014, , 29-57.	0.1	0
65	Solid Solution Alloy Nanoparticles of Immiscible Pd and Ru Elements Neighboring on Rh: Changeover of the Thermodynamic Behavior for Hydrogen Storage and Enhanced CO-Oxidizing Ability. Journal of the American Chemical Society, 2014, 136, 1864-1871.	13.7	229
66	Changeover of the Thermodynamic Behavior for Hydrogen Storage in Rh with Increasing Nanoparticle Size. Springer Theses, 2014, , 69-76.	0.1	0
67	Discovery of Face-Centered-Cubic Ruthenium Nanoparticles: Facile Size-Controlled Synthesis Using the Chemical Reduction Method. Journal of the American Chemical Society, 2013, 135, 5493-5496.	13.7	290
68	Changeover of the Thermodynamic Behavior for Hydrogen Storage in Rh with Increasing Nanoparticle Size. Chemistry Letters, 2013, 42, 55-56.	1.3	10
69	Hydrogen-Storage Properties of Solid-Solution Alloys of Immiscible Neighboring Elements with Pd. Journal of the American Chemical Society, 2010, 132, 15896-15898.	13.7	112
70	Enhancing Hydrogen Storage Capacity of Pd Nanoparticles by Sandwiching between Inorganic Nanosheets. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	1.2	0