List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7026649/publications.pdf Version: 2024-02-01

		16437	9579
209	21,707	64	142
papers	citations	h-index	g-index
212	212	212	12240
212	212	212	13240
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Membrane transporters in drug development. Nature Reviews Drug Discovery, 2010, 9, 215-236.	21.5	2,886
2	Predicting Drug Disposition via Application of BCS: Transport/Absorption/ Elimination Interplay and Development of a Biopharmaceutics Drug Disposition Classification System. Pharmaceutical Research, 2005, 22, 11-23.	1.7	1,222
3	Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: Implications for drug delivery and activity in cancer chemotherapy. Molecular Carcinogenesis, 1995, 13, 129-134.	1.3	780
4	Noncompartmental Determination of the Steady‣tate Volume of Distribution. Journal of Pharmaceutical Sciences, 1979, 68, 1071-1074.	1.6	724
5	Changes in plasma protein binding have little clinical relevance. Clinical Pharmacology and Therapeutics, 2002, 71, 115-121.	2.3	680
6	Clearance concepts in pharmacokinetics. Journal of Pharmacokinetics and Pharmacodynamics, 1973, 1, 123-136.	0.6	674
7	Role of intestinal P-glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine*. Clinical Pharmacology and Therapeutics, 1997, 62, 248-260.	2.3	654
8	BDDCS Applied to Over 900 Drugs. AAPS Journal, 2011, 13, 519-547.	2.2	532
9	BDDCS, the Rule of 5 and drugability. Advanced Drug Delivery Reviews, 2016, 101, 89-98.	6.6	475
10	The Gut as a Barrier to Drug Absorption. Clinical Pharmacokinetics, 2001, 40, 159-168.	1.6	468
11	Gender Effects in Pharmacokinetics and Pharmacodynamics. Drugs, 1995, 50, 222-239.	4.9	438
12	Acyl Glucuronides Revisited: Is the Glucuronidation Proces a Toxification as Well as a Detoxification Mechanism?. Drug Metabolism Reviews, 1992, 24, 5-47.	1.5	393
13	Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Advanced Drug Delivery Reviews, 2008, 60, 717-733.	6.6	379
14	The Role of Transporters in the Pharmacokinetics of Orally Administered Drugs. Pharmaceutical Research, 2009, 26, 2039-2054.	1.7	375
15	Differentiation of absorption and first-pass gut and hepatic metabolism in humans: Studies with cyclosporine*. Clinical Pharmacology and Therapeutics, 1995, 58, 492-497.	2.3	340
16	Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. Clinical Pharmacology and Therapeutics, 1992, 52, 453-457.	2.3	327
17	Effect of OATP1B Transporter Inhibition on the Pharmacokinetics of Atorvastatin in Healthy Volunteers. Clinical Pharmacology and Therapeutics, 2007, 81, 194-204.	2.3	297
18	Unmasking the Dynamic Interplay between Intestinal P-Glycoprotein and CYP3A4. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 1036-1045.	1.3	287

#	Article	IF	CITATIONS
19	Intestinal MDR transport proteins and P-450 enzymes as barriers to oral drug delivery. Journal of Controlled Release, 1999, 62, 25-31.	4.8	279
20	Intestinal drug transporters: An overview. Advanced Drug Delivery Reviews, 2013, 65, 1340-1356.	6.6	265
21	The effects of ketoconazole on the intestinal metabolism and bioavailability of cyclosporine*. Clinical Pharmacology and Therapeutics, 1995, 58, 15-19.	2.3	263
22	Active secretion and enterocytic drug metabolism barriers to drug absorption1PII of original article: S0169-409X(96)003304. The article was originally published in Advanced Drug Delivery Reviews 20 (1996) 99–112.1. Advanced Drug Delivery Reviews, 2001, 46, 89-102.	6.6	257
23	Tacrolimus oral bioavailability doubles with coadministration of ketoconazole*. Clinical Pharmacology and Therapeutics, 1997, 62, 41-49.	2.3	254
24	Effects of renal failure on drug transport and metabolism. , 2006, 109, 1-11.		248
25	The Role of BCS (Biopharmaceutics Classification System) and BDDCS (Biopharmaceutics Drug) Tj ETQq1 1 0.78 34-42.	34314 rgB ⁻ 1.6	T /Overlock 1 242
26	Mouse liver repopulation with hepatocytes generated from human fibroblasts. Nature, 2014, 508, 93-97.	13.7	232
27	The pharmacokinetics and metabolic disposition of tacrolimus: A comparison across ethnic groups. Clinical Pharmacology and Therapeutics, 2001, 69, 24-31.	2.3	187
28	General Treatment of Linear Mammillary Models with Elimination from any Compartment as Used in Pharmacokinetics. Journal of Pharmaceutical Sciences, 1972, 61, 536-541.	1.6	182
29	The Drug Transporterâ^'Metabolism Alliance: Uncovering and Defining the Interplay. Molecular Pharmaceutics, 2009, 6, 1631-1643.	2.3	176
30	Grapefruit juice activates P-glycoprotein-mediated drug transport. Pharmaceutical Research, 1999, 16, 478-485.	1.7	173
31	Intestinal drug metabolism and antitransport processes: A potential paradigm shift in oral drug delivery. Journal of Controlled Release, 1996, 39, 139-143.	4.8	166
32	In Vivo Modulation of Intestinal CYP3A Metabolism by P-Glycoprotein: Studies Using the Rat Single-Pass Intestinal Perfusion Model. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 306-314.	1.3	151
33	Active secretion and enterocytic drug metabolism barriers to drug absorption. Advanced Drug Delivery Reviews, 1996, 20, 99-112.	6.6	149
34	Relationship between the pharmacokinetics and pharmacodynamics of procainamide. Clinical Pharmacology and Therapeutics, 1976, 20, 278-289.	2.3	148
35	Prevalence of Acid-Reducing Agents (ARA) in Cancer Populations and ARA Drug–Drug Interaction Potential for Molecular Targeted Agents in Clinical Development. Molecular Pharmaceutics, 2013, 10, 4055-4062.	2.3	143
36	Multiple Transporters Affect the Disposition of Atorvastatin and Its Two Active Hydroxy Metabolites: Application of in Vitro and ex Situ Systems. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 762-771.	1.3	136

#	Article	IF	CITATIONS
37	P-glycoprotein (P-gp/MDR1)-Mediated Efflux of Sex-Steroid Hormones and Modulation of P-gp Expression In Vitro. Pharmaceutical Research, 2004, 21, 1284-1293.	1.7	129
38	The Use of BDDCS in Classifying the Permeability of Marketed Drugs. Pharmaceutical Research, 2008, 25, 483-488.	1.7	124
39	The effect of water-soluble vitamin E on cyclosporine pharmacokinetics in healthy volunteers*. Clinical Pharmacology and Therapeutics, 1996, 59, 297-303.	2.3	119
40	Elucidating Rifampin's Inducing and Inhibiting Effects on Glyburide Pharmacokinetics and Blood Glucose in Healthy Volunteers: Unmasking the Differential Effects of Enzyme Induction and Transporter Inhibition for a Drug and Its Primary Metabolite. Clinical Pharmacology and Therapeutics, 2009, 85, 78-85.	2.3	119
41	EFFECTS OF UREMIC TOXINS ON HEPATIC UPTAKE AND METABOLISM OF ERYTHROMYCIN. Drug Metabolism and Disposition, 2004, 32, 1239-1246.	1.7	117
42	Effects of Drug Transporters on Volume of Distribution. AAPS Journal, 2009, 11, 250-261.	2.2	116
43	Effect of Food on the Pharmacokinetics of Cyclosporine in Healthy Subjects Following Oral and Intravenous Administration. Journal of Clinical Pharmacology, 1990, 30, 643-653.	1.0	115
44	Drug Discovery and Regulatory Considerations for Improving In Silico and In Vitro Predictions that Use Caco-2 as a Surrogate for Human Intestinal Permeability Measurements. AAPS Journal, 2013, 15, 483-497.	2.2	113
45	Ex Situ Inhibition of Hepatic Uptake and Efflux Significantly Changes Metabolism: Hepatic Enzyme-Transporter Interplay. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 1040-1045.	1.3	104
46	PHARMACOKINETICS OF ATORVASTATIN AND ITS HYDROXY METABOLITES IN RATS AND THE EFFECTS OF CONCOMITANT RIFAMPICIN SINGLE DOSES: RELEVANCE OF FIRST-PASS EFFECT FROM HEPATIC UPTAKE TRANSPORTERS, AND INTESTINAL AND HEPATIC METABOLISM. Drug Metabolism and Disposition, 2006, 34, 1175-1181.	1.7	101
47	Predicting Drug Disposition via Application of a Biopharmaceutics Drug Disposition Classification System. Basic and Clinical Pharmacology and Toxicology, 2010, 106, 162-167.	1.2	98
48	Premarketing observational studies of population pharmacokinetics of new drugs. Clinical Pharmacology and Therapeutics, 1985, 38, 481-487.	2.3	96
49	CYP3A4-Transfected Caco-2 Cells as a Tool for Understanding Biochemical Absorption Barriers: Studies with Sirolimus and Midazolam. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 143-155.	1.3	96
50	Active transport of the angiotensin-II antagonist losartan and its main metabolite EXP 3174 across MDCK-MDR1 and Caco-2 cell monolayers. British Journal of Pharmacology, 2000, 129, 1235-1243.	2.7	92
51	HEPATIC MICROSOME STUDIES ARE INSUFFICIENT TO CHARACTERIZE IN VIVO HEPATIC METABOLIC CLEARANCE AND METABOLIC DRUG-DRUG INTERACTIONS: STUDIES OF DIGOXIN METABOLISM IN PRIMARY RAT HEPATOCYTES VERSUS MICROSOMES. Drug Metabolism and Disposition, 2004, 32, 1311-1316.	1.7	91
52	The Operational Multiple Dosing Half-life: A Key to Defining Drug Accumulation in Patients and to Designing Extended Release Dosage Forms. Pharmaceutical Research, 2008, 25, 2869-2877.	1.7	85
53	Comparison of Measures of Adherence to Human Immunodeficiency Virus Preexposure Prophylaxis Among Adolescent and Young Men Who Have Sex With Men in the United States. Clinical Infectious Diseases, 2018, 66, 213-219.	2.9	82
54	Characterizing the expression of CYP3A4 and efflux transporters (P-gp, MRP1, and MRP2) in CYP3A4-transfected Caco-2 cells after induction with sodium butyrate and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate. Pharmaceutical Research, 2001, 18, 1102-1109.	1.7	80

#	Article	IF	CITATIONS
55	IN VITRO AND IN VIVO CORRELATION OF HEPATIC TRANSPORTER EFFECTS ON ERYTHROMYCIN METABOLISM: CHARACTERIZING THE IMPORTANCE OF TRANSPORTER-ENZYME INTERPLAY. Drug Metabolism and Disposition, 2006, 34, 1336-1344.	1.7	78
56	BDDCS Class Prediction for New Molecular Entities. Molecular Pharmaceutics, 2012, 9, 570-580.	2.3	78
57	The BCS, BDDCS, and Regulatory Guidances. Pharmaceutical Research, 2011, 28, 1774-1778.	1.7	77
58	In Vitro and in Vivo Testing and Correlation for Oral Controlled/Modified-Release Dosage Forms. Pharmaceutical Research, 1990, 07, 975-982.	1.7	72
59	Disposition and irreversible plasma protein binding of tolmetin in humans. Clinical Pharmacology and Therapeutics, 1988, 44, 107-114.	2.3	71
60	DISPOSITION OF TACROLIMUS IN ISOLATED PERFUSED RAT LIVER: INFLUENCE OF TROLEANDOMYCIN, CYCLOSPORINE, AND GG918. Drug Metabolism and Disposition, 2003, 31, 1292-1295.	1.7	69
61	Effect of route of administration and distribution on drug action. Journal of Pharmacokinetics and Pharmacodynamics, 1978, 6, 559-585.	0.6	68
62	Effects of Ketoconazole on Digoxin Absorption and Disposition in Rat. Pharmacology, 1998, 56, 308-313.	0.9	68
63	Effect of probenecid on the formation and elimination of acyl glucuronides: Studies with zomepirac. Clinical Pharmacology and Therapeutics, 1985, 38, 121-127.	2.3	67
64	Pharmacokinetics and metabolism of bepridil. American Journal of Cardiology, 1985, 55, C8-C13.	0.7	67
65	High-fat meals increase the clearance of cyclosporine. Pharmaceutical Research, 1990, 07, 46-48.	1.7	66
66	Association of age, baseline kidney function, and medication exposure with declines in creatinine clearance on pre-exposure prophylaxis: an observational cohort study. Lancet HIV,the, 2016, 3, e521-e528.	2.1	66
67	Improving the prediction of the brain disposition for orally administered drugs using BDDCS. Advanced Drug Delivery Reviews, 2012, 64, 95-109.	6.6	65
68	Kinetics of oral ethambutol in the normal subject. Clinical Pharmacology and Therapeutics, 1977, 22, 615-621.	2.3	64
69	Rosuvastatin Pharmacokinetics in Asian and White Subjects Wild Type for Both OATP1B1 and BCRP Under Control and Inhibited Conditions. Journal of Pharmaceutical Sciences, 2017, 106, 2751-2757.	1.6	64
70	An examination of protein binding and protein-facilitated uptake relating to in vitro-in vivo extrapolation. European Journal of Pharmaceutical Sciences, 2018, 123, 502-514.	1.9	63
71	BDDCS Predictions, Self-Correcting Aspects of BDDCS Assignments, BDDCS Assignment Corrections, and Classification for more than 175 Additional Drugs. AAPS Journal, 2016, 18, 251-260.	2.2	60
72	Comparison of bidirectional lamivudine and zidovudine transport using MDCK, MDCK–MDR1, and Caco-2 cell monolayers. Journal of Pharmaceutical Sciences, 2009, 98, 4413-4419.	1.6	58

#	Article	IF	CITATIONS
73	General treatment of mean residence time, clearance, and volume parameters in linear mammillary models with elimination from any compartment. Journal of Pharmacokinetics and Pharmacodynamics, 1988, 16, 475-492.	0.6	55
74	Distinguishing between the Permeability Relationships with Absorption and Metabolism To Improve BCS and BDDCS Predictions in Early Drug Discovery. Molecular Pharmaceutics, 2014, 11, 1335-1344.	2.3	55
75	Hypersensitivity to nonsteroidal anti-inflammatory drugs. Nature Medicine, 1995, 1, 2-4.	15.2	54
76	Measures of BSEP Inhibition In Vitro Are Not Useful Predictors of DILI. Toxicological Sciences, 2018, 162, 499-508.	1.4	53
77	The Critical Role of Passive Permeability in Designing Successful Drugs. ChemMedChem, 2020, 15, 1862-1874.	1.6	53
78	Differences in Cumulative Exposure and Adherence to Tenofovir in the VOICE, iPrEx OLE, and PrEP Demo Studies as Determined via Hair Concentrations. AIDS Research and Human Retroviruses, 2017, 33, 778-783.	0.5	52
79	The renal elimination of procainamide. Clinical Pharmacology and Therapeutics, 1976, 19, 55-62.	2.3	50
80	Effects of Uptake and Efflux Transporter Inhibition on Erythromycin Breath Test Results. Clinical Pharmacology and Therapeutics, 2007, 81, 828-832.	2.3	48
81	Why Drugs Fail in Late Stages of Development: Case Study Analyses from the Last Decade and Recommendations. AAPS Journal, 2018, 20, 46.	2.2	46
82	The Presence of a Transporter-Induced Protein Binding Shift: A New Explanation for Protein-Facilitated Uptake and Improvement for In Vitro-In Vivo Extrapolation. Drug Metabolism and Disposition, 2019, 47, 358-363.	1.7	44
83	Volume Terms in Pharmacokinetics. Journal of Pharmaceutical Sciences, 1969, 58, 639-641.	1.6	43
84	Pharmacokinetics of cefamandole using a HPLC assay. Journal of Pharmacokinetics and Pharmacodynamics, 1978, 6, 153-164.	0.6	42
85	Hepatic Clearance Predictions from In Vitro-In Vivo Extrapolation and the Biopharmaceutics Drug Disposition Classification System. Drug Metabolism and Disposition, 2016, 44, 1731-1735.	1.7	42
86	Evaluation of DILI Predictive Hypotheses in Early Drug Development. Chemical Research in Toxicology, 2017, 30, 1017-1029.	1.7	42
87	Development and Validation of an Immunoassay for Tenofovir in Urine as a Real-Time Metric of Antiretroviral Adherence. EClinicalMedicine, 2018, 2-3, 22-28.	3.2	42
88	InÂVitro-InÂVivo Extrapolation and Hepatic Clearance-Dependent Underprediction. Journal of Pharmaceutical Sciences, 2019, 108, 2500-2504.	1.6	42
89	Probenecid-induced changes in the clearance of carprofen enantiomers: A preliminary study. Clinical Pharmacology and Therapeutics, 1989, 45, 500-505.	2.3	40
90	Red wine decreases cyclosporine bioavailability. Clinical Pharmacology and Therapeutics, 2001, 70, 468-474.	2.3	39

#	Article	IF	CITATIONS
91	Effects of Uremic Toxins on Transport and Metabolism of Different Biopharmaceutics Drug Disposition Classification System Xenobiotics. Journal of Pharmaceutical Sciences, 2011, 100, 3831-3842.	1.6	39
92	Attenuation of furosemide's diuretic effect by indomethacin: Pharmacokinetic evaluation. Journal of Pharmacokinetics and Pharmacodynamics, 1979, 7, 265-274.	0.6	38
93	Characterization of P-glycoprotein mediated transport of K02, a novel vinylsulfone peptidomimetic cysteine protease inhibitor, across MDR1-MDCK and Caco-2 cell monolayers. , 1998, 15, 1520-1524.		38
94	Renal excretion of pseudoephedrine. Clinical Pharmacology and Therapeutics, 1980, 28, 690-694.	2.3	37
95	Elucidating the Effect of Final-Day Dosing of Rifampin in Induction Studies on Hepatic Drug Disposition and Metabolism. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 864-870.	1.3	37
96	Transdermal bioavailability and first-pass skin metabolism: A preliminary evaluation with nitroglycerin. Journal of Pharmacokinetics and Pharmacodynamics, 1987, 15, 423-437.	0.6	36
97	Effect of cimetidine or ranitidine administration on nifedipine pharmacokinetics and pharmacodynamics. Clinical Pharmacology and Therapeutics, 1988, 43, 673-680.	2.3	36
98	There Are No Useful CYP3A Probes that Quantitatively Predict the In Vivo Kinetics of Other CYP3A Substrates and No Expectation that One Will Be Found. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2005, 5, 79-83.	3.4	36
99	Irreversible binding of tolmetin glucuronic acid esters to albumin in vitro. Pharmaceutical Research, 1990, 07, 21-27.	1.7	35
100	The FDA Should Eliminate the Ambiguities in the Current BCS Biowaiver Guidance and Make Public the Drugs for Which BCS Biowaivers Have Been Granted. Clinical Pharmacology and Therapeutics, 2010, 88, 405-407.	2.3	35
101	Variable glyceryl dinitrate formation as a function of route of nitroglycerin administration. Clinical Pharmacology and Therapeutics, 1987, 42, 273-277.	2.3	33
102	Prediction of the distribution volumes of cefazolin and tobramycin in obese children based on physiological pharmacokinetic concepts. Pharmaceutical Research, 1989, 06, 486-491.	1.7	33
103	Hydrochlorothiazide Pharmacokinetics and Pharmacologic Effect: The Influence of Indomethacin. Journal of Clinical Pharmacology, 1982, 22, 32-41.	1.0	32
104	The Universally Unrecognized Assumption in Predicting Drug Clearance and Organ Extraction Ratio. Clinical Pharmacology and Therapeutics, 2018, 103, 521-525.	2.3	32
105	Late-Stage Failures of Monoclonal Antibody Drugs: A Retrospective Case Study Analysis. Pharmacology, 2020, 105, 145-163.	0.9	32
106	Predicting when Biliary Excretion of Parent Drug is a Major Route of Elimination in Humans. AAPS Journal, 2014, 16, 1085-1096.	2.2	31
107	Few Drugs Display Flip-Flop Pharmacokinetics and These Are Primarily Associated with Classes 3 and 4 of the BDDCS. Journal of Pharmaceutical Sciences, 2015, 104, 3229-3235.	1.6	31
108	Ascorbic acid metabolites are involved in intraocular pressure control in the general population. Redox Biology, 2019, 20, 349-353.	3.9	31

#	Article	IF	CITATIONS
109	Use of General Partial Fraction Theorem for Obtaining Inverse Laplace Transforms in Pharmacokinetic Analysis. Journal of Pharmaceutical Sciences, 1971, 60, 1593-1594.	1.6	30
110	Acute Massive Chloral Hydrate Intoxication Treated with Hemodialysis: A Clinical Pharmacokinetic Analysis. Journal of Clinical Pharmacology, 1978, 18, 136-142.	1.0	30
111	A standard approach to compiling clinical pharmacokinetic data. Journal of Pharmacokinetics and Pharmacodynamics, 1981, 9, 59-127.	0.6	30
112	Glutathione S-transferase-mediated metabolism of glyceryl trinitrate in subcellular fractions of bovine coronary arteries. Pharmaceutical Research, 1992, 09, 1460-1464.	1.7	29
113	Is Ciprofloxacin a Substrate of Pâ€glycoprotein?. Archives of Drug Information, 2011, 4, 1-9.	1.6	29
114	Changes in clearance, volume and bioavailability of immunosuppressants when given with HAART in HIVâ€l infected liver and kidney transplant recipients. Biopharmaceutics and Drug Disposition, 2013, 34, 442-451.	1.1	29
115	Successful and Unsuccessful Prediction of Human Hepatic Clearance for Lead Optimization. Journal of Medicinal Chemistry, 2021, 64, 3546-3559.	2.9	29
116	Furosemide kinetics and dynamics after kidney transplant. Clinical Pharmacology and Therapeutics, 1981, 30, 105-113.	2.3	28
117	Marked alterations in dose-dependent prednisolone kinetics in women taking oral contraceptives. Clinical Pharmacology and Therapeutics, 1986, 39, 425-429.	2.3	28
118	A human lymphocyte based ex vivo assay to study the effect of drugs on P-glycoprotein (P-gp) function. Pharmaceutical Research, 2001, 18, 39-44.	1.7	28
119	An integrated approach to the pharmacokinetic analysis of drug absorption. Journal of Pharmacokinetics and Pharmacodynamics, 1974, 2, 525-544.	0.6	27
120	Clearance (née Rowland) concepts: a downdate and an update. Journal of Pharmacokinetics and Pharmacodynamics, 2010, 37, 529-539.	0.8	27
121	Effect of Single-Dose Rifampin on the Pharmacokinetics of Warfarin in Healthy Volunteers. Clinical Pharmacology and Therapeutics, 2010, 88, 540-547.	2.3	27
122	The Use of Betaine HCl to Enhance Dasatinib Absorption in Healthy Volunteers with Rabeprazole-Induced Hypochlorhydria. AAPS Journal, 2014, 16, 1358-1365.	2.2	27
123	Pharmacokinetics of nitroglycerin and its dinitrate metabolites over a thirtyfold range of oral doses. Clinical Pharmacology and Therapeutics, 1990, 47, 592-598.	2.3	26
124	Pharmacokinetics of nicotinic acid – salicylic acid interaction. Clinical Pharmacology and Therapeutics, 1989, 46, 642-647.	2.3	25
125	Are There Any Experimental Perfusion Data that Preferentially Support the Dispersion and Parallel-Tube Models over the Well-Stirred Model of Organ Elimination?. Drug Metabolism and Disposition, 2020, 48, 537-543.	1.7	25
126	Drug metabolism and laboratory anesthetic protocols in the rat: examination of antipyrine pharmacokinetics. Pharmaceutical Research, 1991, 08, 544-546.	1.7	24

#	Article	IF	CITATIONS
127	Net secretion of furosemide is subject to indomethacin inhibition, as observed in Caco-2 monolayers and excised rat jejunum. Pharmaceutical Research, 1999, 16, 221-224.	1.7	24
128	Pharmacokinetics of Orally and Intravenously Administered Cyclosporine in Pre—Kidney Transplant Patients. Journal of Clinical Pharmacology, 1994, 34, 60-67.	1.0	22
129	Predicting the Extent of Metabolism Using <i>in Vitro</i> Permeability Rate Measurements and <i>in Silico</i> Permeability Rate Predictions. Molecular Pharmaceutics, 2015, 12, 1456-1466.	2.3	22
130	How Transporters Have Changed Basic Pharmacokinetic Understanding. AAPS Journal, 2019, 21, 103.	2.2	22
131	State of the Art and Uses for the Biopharmaceutics Drug Disposition Classification System (BDDCS): New Additions, Revisions, and Citation References. AAPS Journal, 2022, 24, 37.	2.2	22
132	Nitroglycerin absorption from transdermal systems: formulation effects and metabolite concentrations. Pharmaceutical Research, 1991, 08, 744-749.	1.7	21
133	pH Dependent but not P-gp Dependent Bidirectional Transport Study of S-propranolol: The Importance of Passive Diffusion. Pharmaceutical Research, 2015, 32, 2516-26.	1.7	21
134	Reliability of In Vitro and In Vivo Methods for Predicting the Effect of P-Glycoprotein on the Delivery of Antidepressants to the Brain. Clinical Pharmacokinetics, 2016, 55, 143-167.	1.6	21
135	Understanding drug–drug interaction and pharmacogenomic changes in pharmacokinetics for metabolized drugs. Journal of Pharmacokinetics and Pharmacodynamics, 2019, 46, 155-163.	0.8	21
136	Investigating the Theoretical Basis for In Vitro–In Vivo Extrapolation (IVIVE) in Predicting Drug Metabolic Clearance and Proposing Future Experimental Pathways. AAPS Journal, 2020, 22, 120.	2.2	21
137	Absorption kinetics of cyclosporine in healthy volunteers. Biopharmaceutics and Drug Disposition, 1989, 10, 591-596.	1.1	19
138	Evaluation of the relevance of DILI predictive hypotheses in early drug development: review of <i>in vitro</i> methodologies <i>vs</i> . BDDCS classification. Toxicology Research, 2018, 7, 358-370.	0.9	19
139	The Extended Clearance Concept Following Oral and Intravenous Dosing: Theory and Critical Analyses. Pharmaceutical Research, 2018, 35, 242.	1.7	19
140	There is Only One Valid Definition of Clearance: Critical Examination of Clearance Concepts Reveals the Potential for Errors in Clinical Drug Dosing Decisions. AAPS Journal, 2021, 23, 67.	2.2	19
141	A Holy Grail of Clinical Pharmacology: Prediction of Drug Pharmacokinetics and Pharmacodynamics in the Individual Patient. Clinical Pharmacology and Therapeutics, 2009, 86, 133-134.	2.3	18
142	Sotalol Permeability in Cultured-Cell, Rat Intestine, and PAMPA System. Pharmaceutical Research, 2012, 29, 1768-1774.	1.7	18
143	Cefamandole kinetics in uremic patients undergoing hemodialysis. Clinical Pharmacology and Therapeutics, 1979, 26, 592-599.	2.3	17
144	Comparison of vasodilatory responses to nitroglycerin and its dinitrate metabolites in human veins. Clinical Pharmacology and Therapeutics, 1992, 52, 590-596.	2.3	17

Leslie Z Benet, FCP

#	Article	IF	CITATIONS
145	Chiral Bioequivalence. Clinical Pharmacokinetics, 2000, 39, 459-469.	1.6	16
146	Gastric Reacidification with Betaine HCl in Healthy Volunteers with Rabeprazole-Induced Hypochlorhydria. Molecular Pharmaceutics, 2013, 10, 4032-4037.	2.3	16
147	Interlaboratory Variability in Human Hepatocyte Intrinsic Clearance Values and Trends with Physicochemical Properties. Pharmaceutical Research, 2019, 36, 113.	1.7	16
148	Can <i>In Vitro–In Vivo</i> Extrapolation Be Successful? Recognizing the Incorrect Clearance Assumptions. Clinical Pharmacology and Therapeutics, 2022, 111, 1022-1035.	2.3	16
149	Classification of natural products as sources of drugs according to the biopharmaceutics drug disposition classification system (BDDCS). Chinese Journal of Natural Medicines, 2016, 14, 888-897.	0.7	15
150	Intestinal Efflux Transporters P-gp and BCRP Are Not Clinically Relevant in Apixaban Disposition. Pharmaceutical Research, 2020, 37, 208.	1.7	15
151	Peptides and proteins as drugs. Pharmaceutical Research, 1985, 02, 151-156.	1.7	14
152	Use of the Biopharmaceutics Drug Disposition Classification System (BDDCS) to Help Predict the Occurrence of Idiosyncratic Cutaneous Adverse Drug Reactions Associated with Antiepileptic Drug Usage. AAPS Journal, 2016, 18, 757-766.	2.2	14
153	In vitro and in vivo irreversible plasma protein binding of beclobric acid enantiomers. Chirality, 1993, 5, 120-125.	1.3	13
154	HPLC assay for FK 506 and two metabolites in isolated rat hepatocytes and rat liver microsomes. Pharmaceutical Research, 1994, 11, 844-847.	1.7	13
155	Intermittent drug dosing intervals guided by the operational multiple dosing half lives for predictable plasma accumulation and fluctuation. Journal of Pharmacokinetics and Pharmacodynamics, 2011, 38, 369-383.	0.8	13
156	Inclusion of Placebos and Blinding for Ascending Dose Firstâ€inâ€Human Studies and Other Underpowered Phase 1 Studies has not been Justified and on Balance is Not Useful. Basic and Clinical Pharmacology and Toxicology, 2015, 117, 44-51.	1.2	13
157	TPT sulfonate, a single, oral dose schistosomicidal prodrug: In vivo efficacy, disposition and metabolic profiling. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 571-586.	1.4	13
158	An integrated approach to pharmacokinetic analysis for linear mammillary systems in which input and exit may occur in/from any compartment. Journal of Pharmacokinetics and Pharmacodynamics, 1989, 17, 673-686.	0.6	12
159	Insights into solute carriers: physiological functions and implications in disease and pharmacokinetics. MedChemComm, 2016, 7, 1462-1478.	3.5	12
160	Cellular Uptake of Levocetirizine by Organic Anion Transporter 4. Journal of Pharmaceutical Sciences, 2017, 106, 2895-2898.	1.6	12
161	Development and validation of an assay to analyze atazanavir in human hair via liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2018, 32, 431-441.	0.7	11
162	Evaluating Withinâ€Subject Variability for Narrow Therapeutic Index Drugs. Clinical Pharmacology and Therapeutics, 2019, 105, 411-416.	2.3	11

#	Article	IF	CITATIONS
163	Volume of Distribution is Unaffected by Metabolic Drug–Drug Interactions. Clinical Pharmacokinetics, 2021, 60, 205-222.	1.6	11
164	Effects of Indomethacin and Carprofen on Renal Homeostasis in Rheumatoid Arthritis Patients and in Healthy Individuals. Journal of Clinical Pharmacology, 1981, 21, 493-500.	1.0	10
165	Ion-Paired Liquid Chromatographic Method for the Analysis of Pyridostigmine in Plasma. Journal of Liquid Chromatography and Related Technologies, 1987, 10, 2231-2246.	0.9	10
166	In Vitro–In Vivo Inaccuracy: The CYP3A4 Anomaly. Drug Metabolism and Disposition, 2019, 47, 1368-1371.	1.7	10
167	The Necessity of Using Changes in Absorption Time to Implicate Intestinal Transporter Involvement in Oral Drug-Drug Interactions. AAPS Journal, 2020, 22, 111.	2.2	10
168	Use of the unanesthetized rhesus monkey as a model for studying the gastrointestinal absorption of drugs. Journal of Pharmacokinetics and Pharmacodynamics, 1974, 2, 417-431.	0.6	9
169	HPLC Measurement of Cyclosporine in Blood Plasma and Urine and Simultaneous Measurement of its Four Metabolites in Blood. , 1989, 12, 1451-1462.		9
170	Addendum 1. Use of isotopes in bioavailability testing. Journal of Pharmacokinetics and Pharmacodynamics, 1973, 1, 83-87.	0.6	8
171	Saturable kinetics of intravenous chlorothiazide in the rhesus monkey. Journal of Pharmacokinetics and Pharmacodynamics, 1981, 9, 461-476.	0.6	8
172	Percutaneous penetration kinetics of nitroglycerin and its dinitrate metabolites across hairless mouse skin in vitro. Pharmaceutical Research, 1991, 08, 1231-1237.	1.7	8
173	Meal Effects Confound Attempts to Counteract Rabeprazole-Induced Hypochlorhydria Decreases in Atazanavir Absorption. Pharmaceutical Research, 2017, 34, 619-628.	1.7	8
174	A Simple Methodology to Differentiate Changes in Bioavailability From Changes in Clearance Following Oral Dosing of Metabolized Drugs. Clinical Pharmacology and Therapeutics, 2020, 108, 306-315.	2.3	8
175	Predicting Pharmacokinetics/Pharmacodynamics in the Individual Patient: Separating Reality From Hype. Journal of Clinical Pharmacology, 2018, 58, 979-989.	1.0	7
176	Can BDDCS illuminate targets in drug design?. Drug Discovery Today, 2019, 24, 2299-2306.	3.2	7
177	Characterization of Fasiglifam-Related Liver Toxicity in Dogs. Drug Metabolism and Disposition, 2019, 47, 525-534.	1.7	7
178	Protein Binding and Hepatic Clearance: Re-Examining the Discrimination between Models of Hepatic Clearance with Diazepam in the Isolated Perfused Rat Liver Preparation. Drug Metabolism and Disposition, 2019, 47, 1397-1402.	1.7	7
179	High Pressure Liquid Chromatographic Determination of Mecillinam in Human Plasma and Urine. Analytical Letters, 1981, 14, 1433-1447.	1.0	6
180	Membrane Populations of Bovine Choroid Plexus: Separation by Density Gradient Centrifugation in Modified Colloidal Silica. Journal of Neurochemistry, 1982, 37, 768-774.	2.1	6

#	Article	IF	CITATIONS
181	Pharmacokinetics of nitroglycerin and its four metabolites during nitroglycerin transdermal administration. Biopharmaceutics and Drug Disposition, 1994, 15, 179-183.	1.1	6
182	Benet L Z and Galeazzi R L: Noncompartmental Determination of the Steady-State Volume of Distribution, J Pharm Sci 68, 1071–1074, 1979—the Backstory. AAPS Journal, 2012, 14, 164-167.	2.2	6
183	Challenging the Relevance of Unbound Tissue-to-Blood Partition Coefficient (Kpuu) on Prediction of Drug-Drug Interactions. Pharmaceutical Research, 2020, 37, 73.	1.7	6
184	Predicting Interactions between Rifampin and Antihypertensive Drugs Using the Biopharmaceutics Drug Disposition Classification System. Pharmacotherapy, 2020, 40, 274-290.	1.2	6
185	Pharmacokinetic studies of the nitroglycerin metabolites, 1,2- and 1,3- glyceryl dinitrates, in the rat. Biopharmaceutics and Drug Disposition, 1991, 12, 215-222.	1.1	5
186	Interpretation and utilization of effect and concentration data collected in an in vivo pharmacokinetic and in vitro pharmacodynamic study. Pharmaceutical Research, 1993, 10, 889-894.	1.7	5
187	Immunopharmacodynamic Studies of Cyclosporine in Patients Awaiting Renal Transplantation. Journal of Clinical Pharmacology, 1995, 35, 967-973.	1.0	5
188	The Enhancement of Subcutaneous First-Pass Metabolism Causes Nonlinear Pharmacokinetics of TAK-448 after a Single Subcutaneous Administration to Rats. Drug Metabolism and Disposition, 2019, 47, 1004-1012.	1.7	5
189	Batchâ€toâ€Batch and Withinâ€Subject Variability: What Do We Know and How Do These Variabilities Affect Clinical Pharmacology and Bioequivalence?. Clinical Pharmacology and Therapeutics, 2019, 105, 326-328.	2.3	5
190	Investigating Intestinal Transporter Involvement in Rivaroxaban Disposition through Examination of Changes in Absorption. Pharmaceutical Research, 2021, 38, 795-801.	1.7	5
191	Examination of Urinary Excretion of Unchanged Drug in Humans and Preclinical Animal Models:Âlncreasing the Predictability of Poor Metabolism in Humans. Pharmaceutical Research, 2021, 38, 1139-1156.	1.7	5
192	Time course of cyclosporine and its metabolites in blood, liver and spleen of naive lewis rats: Comparison with preliminary data obtained in transplanted animals. Biopharmaceutics and Drug Disposition, 1995, 16, 303-312.	1.1	4
193	Local delivery of hormonal therapy with silastic tubing for prevention and treatment of breast cancer. Scientific Reports, 2018, 8, 92.	1.6	4
194	Prednisone and prednisolone interconversion in the rabbit utilizing unbound concentrations. Biopharmaceutics and Drug Disposition, 1991, 12, 467-477.	1.1	3
195	Determination of aliphatic thiols by fluorometric high-performance liquid chromatography after precolumn derivatization with 2-(4-N-maleimidophenyl)-6-methylbenzothiazole. Pharmaceutical Research, 1995, 12, 155-160.	1.7	3
196	Understanding the Potential Interethnic Difference in Rosuvastatin Pharmacokinetics. Journal of Pharmaceutical Sciences, 2017, 106, 2231-2233.	1.6	3
197	Food, Acid Supplementation and Drug Absorption – a Complicated Gastric Mix: a Randomized Control Trial. Pharmaceutical Research, 2019, 36, 155.	1.7	3
198	Analyzing Potential Intestinal Transporter Drug-Drug Interactions: Reevaluating Ticagrelor Interaction Studies. Pharmaceutical Research, 2021, 38, 1639-1644.	1.7	3

#	Article	IF	CITATIONS
199	Does Addition of Protein to Hepatocyte or Microsomal In Vitro Incubations Provide a Useful Improvement in In Vitro-In Vivo Extrapolation Predictability?. Drug Metabolism and Disposition, 2022, 50, 401-412.	1.7	3
200	Variable glyceryl dinitrate formation following infusions of glyceryl trinitrate at different vascular sites in the rat. Pharmaceutical Research, 1991, 08, 877-882.	1.7	2
201	Review and Critique of the Institute of Medicine Report "The Future of Drug Safety― Clinical Pharmacology and Therapeutics, 2007, 81, 158-161.	2.3	2
202	Effect of P-Glycoprotein on the Rat Intestinal Permeability and Metabolism of the BDDCS Class 1 Drug Verapamil. Molecular Pharmaceutics, 2013, 10, 4038-4045.	2.3	2
203	A Phase I Study of Targeted, Dose-Escalated Intravenous Busulfan in Combination With Etoposide as Myeloablative Therapy for Autologous Stem Cell Transplantation in Acute Myeloid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2015, 15, 377-383.	0.2	2
204	Effects of Single Dose Rifampin on the Pharmacokinetics of Fluvastatin in Healthy Volunteers. Clinical Pharmacology and Therapeutics, 2021, 110, 480-485.	2.3	2
205	Transporter-Based Drug–Drug Interactions and Their Effect on Distribution Volumes. , 2010, , 437-471.		1
206	A Step Closer to Personalized Chemotherapy: Consideration of the Influence of Genetic Variation in Hepatic Uptake Transporters on the Metabolism of CYP3A Substrates. Clinical Pharmacology and Therapeutics, 2012, 92, 551-552.	2.3	1
207	Response of authors to Ganju and Dias' comments on †Inclusion of Placebos and Blinding for Ascending Dose First-in-Human Studies and Other Underpowered Phase 1 Studies Has Not Been Justified and on Balance is Not Useful' by D. A. Parasrampuria and L. Z. B. Basic and Clinical Pharmacology and Toxicology. 2015, 117, 367-367.	1.2	0
208	Using Individualized Patient Data for Prediction of Population Dosing Recommendations Versus Predictions of Individualized Patient Dosing. Journal of Clinical Pharmacology, 2021, 61, 734-735.	1.0	0
209	Morality Play. Science, 1996, 273, 1782-1782.	6.0	Ο