
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/702658/publications.pdf Version: 2024-02-01

ΔΤΩΠΩΗΙ ΥΛΜΑΖΛΚΙ

#	Article	IF	CITATIONS
1	Effect of Meteoric Ions on Ionospheric Conductance at Jupiter. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	6
2	Correlation of Venusian Mesoscale Cloud Morphology Between Images Acquired at Various Wavelengths. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	3
3	Variation of Jupiter's Aurora Observed by Hisaki/EXCEED: 4. Quasiâ€Periodic Variation. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028575.	2.4	3
4	Investigation of UV Absorbers on Venus Using the 283 and 365Ânm Phase Curves Obtained From Akatsuki. Geophysical Research Letters, 2021, 48, e2020GL090577.	4.0	5
5	The nightside cloud-top circulation of the atmosphere of Venus. Nature, 2021, 595, 511-515.	27.8	14
6	EUV signals associated with O+ ions observed from ISS-IMAP/EUVI in the nightside ionosphere. Earth, Planets and Space, 2021, 73, .	2.5	1
7	Longâ€Term Monitoring of Energetic Protons at the Bottom of Earth's Radiation Belt. Space Weather, 2021, 19, e2020SW002611.	3.7	0
8	Venus' cloud top wind study: Coordinated Akatsuki/UVI with cloud tracking and TNG/HARPS-N with Doppler velocimetry observations. Icarus, 2020, 335, 113418.	2.5	16
9	Brightness modulations of our nearest terrestrial planet Venus reveal atmospheric super-rotation rather than surface features. Nature Communications, 2020, 11, 5720.	12.8	10
10	Martian Oxygen and Hydrogen Upper Atmospheres Responding to Solar and Dust Storm Drivers: Hisaki Space Telescope Observations. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006500.	3.6	6
11	Dayside cloud top structure of Venus retrieved from Akatsuki IR2 observations. Icarus, 2020, 345, 113682.	2.5	13
12	Spatially Asymmetric Increase in Hot Electron Fraction in the Io Plasma Torus During Volcanically Active Period Revealed by Observations by Hisaki/EXCEED From November 2014 to May 2015. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027100.	2.4	9
13	How waves and turbulence maintain the super-rotation of Venus' atmosphere. Science, 2020, 368, 405-409.	12.6	41
14	Vertical Coupling Between the Cloud‣evel Atmosphere and the Thermosphere of Venus Inferred From the Simultaneous Observations by Hisaki and Akatsuki. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006192.	3.6	2
15	Geographical and Seasonal Variability of Mesospheric Bores Observed from the International Space Station. Journal of Geophysical Research: Space Physics, 2019, 124, 3775-3785.	2.4	11
16	Constraints on Venus Lightning From Akatsuki's First 3 Years in Orbit. Geophysical Research Letters, 2019, 46, 7955-7961.	4.0	9
17	Long-term Variations of Venus's 365 nm Albedo Observed by Venus Express, Akatsuki, MESSENGER, and the Hubble Space Telescope. Astronomical Journal, 2019, 158, 126.	4.7	30
18	The First Astrophysical Result of Hisaki: A Search for the EUV He Lines in a Massive Cool Core Cluster at zÂ=Â0.7. Astrophysical Journal, 2019, 881, 98.	4.5	1

#	Article	IF	CITATIONS
19	Planetary cale Variations in Winds and UV Brightness at the Venusian Cloud Top: Periodicity and Temporal Evolution. Journal of Geophysical Research E: Planets, 2019, 124, 2635-2659.	3.6	21
20	Stationary Features at the Cloud Top of Venus Observed by Ultraviolet Imager Onboard Akatsuki. Journal of Geophysical Research E: Planets, 2019, 124, 1266-1281.	3.6	17
21	Azimuthal Variation in the Io Plasma Torus Observed by the Hisaki Satellite From 2013 to 2016. Journal of Geophysical Research: Space Physics, 2019, 124, 3236-3254.	2.4	13
22	Development of ground pipeline system for high-level scientific data products of the Hisaki satellite mission and its application to planetary space weather. Journal of Space Weather and Space Climate, 2019, 9, A8.	3.3	11
23	Short-term Variation in the Dawn–Dusk Asymmetry of the Jovian Radiation Belt Obtained from GMRT and Hisaki EXCEED Observations. Astrophysical Journal Letters, 2019, 872, L24.	8.3	3
24	Jovian UV Aurora's Response to the Solar Wind: Hisaki EXCEED and Juno Observations. Journal of Geophysical Research: Space Physics, 2019, 124, 10209-10218.	2.4	9
25	Transient Change of Io's Neutral Oxygen Cloud and Plasma Torus Observed by Hisaki. Journal of Geophysical Research: Space Physics, 2019, 124, 10318-10331.	2.4	10
26	Response of Jupiter's Aurora to Plasma Mass Loading Rate Monitored by the Hisaki Satellite During Volcanic Eruptions at Io. Journal of Geophysical Research: Space Physics, 2018, 123, 1885-1899.	2.4	27
27	Extreme ultraviolet spectra of Venusian airglow observed by EXCEED. Icarus, 2018, 307, 207-215.	2.5	7
28	Variation of Jupiter's Aurora Observed by Hisaki/EXCEED: 3. Volcanic Control of Jupiter's Aurora. Geophysical Research Letters, 2018, 45, 71-79.	4.0	12
29	The time variation of atomic oxygen emission around Io during a volcanic event observed with Hisaki/EXCEED. Icarus, 2018, 299, 300-307.	2.5	23
30	Enhancement of the Jovian Magnetospheric Plasma Circulation Caused by the Change in Plasma Supply From the Satellite Io. Journal of Geophysical Research: Space Physics, 2018, 123, 6514-6532.	2.4	20
31	Local Time Dependence of the Thermal Structure in the Venusian Equatorial Upper Atmosphere: Comparison of Akatsuki Radio Occultation Measurements and GCM Results. Journal of Geophysical Research E: Planets, 2018, 123, 2270-2280.	3.6	28
32	Initiation of a lightning search using the lightning and airglow camera onboard the Venus orbiter Akatsuki. Earth, Planets and Space, 2018, 70, 88.	2.5	8
33	Investigating Solar Windâ€Driven Electric Field Influence on Longâ€Term Dynamics of Jovian Synchrotron Radiation. Journal of Geophysical Research: Space Physics, 2018, 123, 9508-9516.	2.4	19
34	Fine Vertical Structures at the Cloud Heights of Venus Revealed by Radio Holographic Analysis of Venus Express and Akatsuki Radio Occultation Data. Journal of Geophysical Research E: Planets, 2018, 123, 2151-2161.	3.6	14
35	Mesospheric bores at southern midlatitudes observed by ISS-IMAP/VISI: a first report of an undulating wave front. Atmospheric Chemistry and Physics, 2018, 18, 16399-16407.	4.9	14
36	The Influence of Io's 2015 Volcanic Activity on Jupiter's Magnetospheric Dynamics. Geophysical Research Letters, 2018, 45, 10,193.	4.0	18

#	Article	IF	CITATIONS
37	Spatial Distribution of Io's Neutral Oxygen Cloud Observed by Hisaki. Journal of Geophysical Research: Space Physics, 2018, 123, 3764-3776.	2.4	18
38	Identification of Extreme Ultraviolet Emission Lines of the Io Plasma Torus Observed by Hisaki/EXCEED. Journal of Geophysical Research E: Planets, 2018, 123, 1723-1731.	3.6	7
39	Ultraviolet imager on Venus orbiter Akatsuki and its initial results. Earth, Planets and Space, 2018, 70, 23.	2.5	34
40	Mean winds at the cloud top of Venus obtained from two-wavelength UV imaging by Akatsuki. Earth, Planets and Space, 2018, 70, .	2.5	52
41	Venus looks different from day to night across wavelengths: morphology from Akatsuki multispectral images. Earth, Planets and Space, 2018, 70, 24.	2.5	31
42	Simultaneous observations of optical lightning from space and LF band lightning waveforms from the ground. Geophysical Research Letters, 2017, 44, 1123-1131.	4.0	4
43	Dawn-dusk difference of periodic oxygen EUV dayglow variations at Venus observed by Hisaki. Icarus, 2017, 292, 102-110.	2.5	7
44	Large stationary gravity wave in the atmosphere of Venus. Nature Geoscience, 2017, 10, 85-88.	12.9	99
45	The geocoronal responses to the geomagnetic disturbances. Journal of Geophysical Research: Space Physics, 2017, 122, 1269-1276.	2.4	23
46	Transient brightening of Jupiter's aurora observed by the Hisaki satellite and Hubble Space Telescope during approach phase of the Juno spacecraft. Geophysical Research Letters, 2017, 44, 4523-4531.	4.0	30
47	Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. Geophysical Research Letters, 2017, 44, 7643-7652.	4.0	68
48	Equatorial jet in the lower to middle cloud layer of Venus revealed by Akatsuki. Nature Geoscience, 2017, 10, 646-651.	12.9	35
49	Image velocimetry for clouds with relaxation labeling based on deformation consistency. Measurement Science and Technology, 2017, 28, 085301.	2.6	15
50	Global distribution of the He + column density observed by Extreme Ultra Violet Imager on the International Space Station. Journal of Geophysical Research: Space Physics, 2017, 122, 7670-7682.	2.4	1
51	Topographical and Local Time Dependence of Large Stationary Gravity Waves Observed at the Cloud Top of Venus. Geophysical Research Letters, 2017, 44, 12,098.	4.0	46
52	Scattering Properties of the Venusian Clouds Observed by the UV Imager on board Akatsuki. Astronomical Journal, 2017, 154, 44.	4.7	27
53	Radial variation of sulfur and oxygen ions in the Io plasma torus as deduced from remote observations by Hisaki. Journal of Geophysical Research: Space Physics, 2017, 122, 2999-3012.	2.4	23
54	Overview of Akatsuki data products: definition of data levels, method and accuracy of geometric correction. Earth, Planets and Space, 2017, 69, .	2.5	20

4

#	Article	IF	CITATIONS
55	Volcanic activity on Io and its influence on the dynamics of the Jovian magnetosphere observed by EXCEED/Hisaki in 2015. Earth, Planets and Space, 2017, 69, .	2.5	35
56	Initial performance of the radio occultation experiment in the Venus orbiter mission Akatsuki. Earth, Planets and Space, 2017, 69, .	2.5	60
57	Absolute calibration of brightness temperature of the Venus disk observed by the Longwave Infrared Camera onboard Akatsuki. Earth, Planets and Space, 2017, 69, .	2.5	21
58	Three-year of observations of Jupiter's aurora and Io plasma torus variabilities by earth orbiting extreme-ultraviolet spectroscope HISAKI. Journal of Physics: Conference Series, 2017, 869, 012069.	0.4	0
59	Variation of Jupiter's aurora observed by Hisaki/EXCEED: 1. Observed characteristics of the auroral electron energies compared with observations performed using HST/STIS. Journal of Geophysical Research: Space Physics, 2016, 121, 4041-4054.	2.4	14
60	Response of Jupiter's inner magnetosphere to the solar wind derived from extreme ultraviolet monitoring of the Io plasma torus. Geophysical Research Letters, 2016, 43, 12,308.	4.0	37
61	The plasmapause formation seen from meridian perspective by KAGUYA. Journal of Geophysical Research: Space Physics, 2016, 121, 11,973-11,984.	2.4	9
62	Three years of concentric gravity wave variability in the mesopause as observed by IMAP/VISI. Geophysical Research Letters, 2016, 43, 11,528.	4.0	13
63	Characteristics of solar wind control on Jovian UV auroral activity deciphered by longâ€ŧerm Hisaki EXCEED observations: Evidence of preconditioning of the magnetosphere?. Geophysical Research Letters, 2016, 43, 6790-6798.	4.0	32
64	Properties of hot electrons in the Jovian inner magnetosphere deduced from extended observations of the Io Plasma Torus. Geophysical Research Letters, 2016, 43, 11,552.	4.0	13
65	Jupiter's Xâ€ray and EUV auroras monitored by Chandra, XMMâ€Newton, and Hisaki satellite. Journal of Geophysical Research: Space Physics, 2016, 121, 2308-2320.	2.4	34
66	Weakening of Jupiter's main auroral emission during January 2014. Geophysical Research Letters, 2016, 43, 988-997.	4.0	50
67	Variation of Jupiter's aurora observed by Hisaki/EXCEED: 2. Estimations of auroral parameters and magnetospheric dynamics. Journal of Geophysical Research: Space Physics, 2016, 121, 4055-4071.	2.4	27
68	AKATSUKI returns to Venus. Earth, Planets and Space, 2016, 68, .	2.5	89
69	Horizontal distributions of sprites derived from the JEMâ€GLIMS nadir observations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3171-3194.	3.3	13
70	Periodic variations of oxygen EUV dayglow in the upper atmosphere of Venus: Hisaki/EXCEED observations. Journal of Geophysical Research E: Planets, 2015, 120, 2037-2052.	3.6	14
71	Overview and early results of the Global Lightning and Sprite Measurements mission. Journal of Geophysical Research D: Atmospheres, 2015, 120, 3822-3851.	3.3	33
72	Local electron heating in the <i>lo</i> plasma torus associated with <i>lo</i> from HISAKI satellite observation. Journal of Geophysical Research: Space Physics, 2015, 120, 10,317.	2.4	25

#	Article	IF	CITATIONS
73	Coordinated airglow observations between IMAP/VISI and a groundâ€based allâ€sky imager on concentric gravity wave in the mesopause. Journal of Geophysical Research: Space Physics, 2015, 120, 9706-9721.	2.4	15
74	Transient internally driven aurora at Jupiter discovered by Hisaki and the Hubble Space Telescope. Geophysical Research Letters, 2015, 42, 1662-1668.	4.0	53
75	Field-of-View Guiding Camera on the HISAKI (SPRINT-A) Satellite. Space Science Reviews, 2014, 184, 259-274.	8.1	46
76	Extreme Ultraviolet Radiation Measurement for Planetary Atmospheres/Magnetospheres from the Earth-Orbiting Spacecraft (Extreme Ultraviolet Spectroscope for Exospheric Dynamics: EXCEED). Space Science Reviews, 2014, 184, 237-258.	8.1	68
77	Evidence for global electron transportation into the jovian inner magnetosphere. Science, 2014, 345, 1581-1584.	12.6	30
78	First spaceborne observation of the entire concentric airglow structure caused by tropospheric disturbance. Geophysical Research Letters, 2014, 41, 6943-6948.	4.0	13
79	A method to estimate optical distortion using planetary images. Planetary and Space Science, 2013, 86, 86-90.	1.7	8
80	Plasmaspheric filament: an isolated magnetic flux tube filled with dense plasmas. Geophysical Research Letters, 2013, 40, 250-254.	4.0	10
81	The extreme ultraviolet spectroscope for planetary science, EXCEED. Planetary and Space Science, 2013, 85, 250-260.	1.7	55
82	Overview of Venus orbiter, Akatsuki. Earth, Planets and Space, 2011, 63, 443-457.	2.5	72
83	Six-Channel Spectrophotometers (PH) Onboard JEM-GLIMS. IEEJ Transactions on Fundamentals and Materials, 2011, 131, 1000-1005.	0.2	11
84	Imaging Observation of the Earth's Plasmasphere and Ionosphere by EUVI of ISS-IMAP on the International Space Station. IEEJ Transactions on Fundamentals and Materials, 2011, 131, 1006-1010.	0.2	7
85	The Global Lightning and Sprite Measurement (GLIMS) Mission on International Space Station -Concept and Overview IEEJ Transactions on Fundamentals and Materials, 2011, 131, 971-976.	0.2	12
86	VHF Lightning Observations on JEM-GLIMS Mission -Gradual Approach to Realize Space-borne VHF Broadband Digital Interferometer IEEJ Transactions on Fundamentals and Materials, 2011, 131, 977-982.	0.2	11
87	Imaging Observation of the Earth's Mesosphere, Thermosphere and Ionosphere by VISI of ISS-IMAP on the International Space Station. IEEJ Transactions on Fundamentals and Materials, 2011, 131, 983-988.	0.2	16
88	Lightning and Sprite Imager (LSI) Onboard JEM-GLIMS. IEEJ Transactions on Fundamentals and Materials, 2011, 131, 994-999.	0.2	16
89	Variation in lunar sodium exosphere measured from lunar orbiter SELENE (Kaguya). Planetary and Space Science, 2010, 58, 1660-1664.	1.7	23
90	EUV observation from the Earth-orbiting satellite, EXCEED. Advances in Space Research, 2010, 45, 314-321.	2.6	20

6

#	Article	IF	CITATIONS
91	First sequential images of the plasmasphere from the meridian perspective observed by KAGUYA. Earth, Planets and Space, 2010, 62, e9-e12.	2.5	10
92	Plasmaspheric EUV images seen from lunar orbit: Initial results of the extreme ultraviolet telescope on board the Kaguya spacecraft. Journal of Geophysical Research, 2010, 115, .	3.3	11
93	First optical observation of the Moon's sodium exosphere from the lunar orbiter SELENE (Kaguya). Earth, Planets and Space, 2009, 61, 1025-1029.	2.5	9
94	The Upper Atmosphere and Plasma Imager/the Telescope of Visible Light (UPI/TVIS) onboard the Kaguya spacecraft. Earth, Planets and Space, 2009, 61, xvii-xxiii.	2.5	6
95	Telescope of extreme ultraviolet (TEX) onboard SELENE: science from the Moon. Earth, Planets and Space, 2008, 60, 407-416.	2.5	38
96	Evolution of the outer plasmasphere during low geomagnetic activity observed by the EUV scanner onboard Planet-B. Journal of Geophysical Research, 2000, 105, 27777-27789.	3.3	29
97	Terrestrial plasmaspheric imaging by an Extreme Ultraviolet Scanner on planet-B. Geophysical Research Letters, 2000, 27, 141-144.	4.0	49
98	EXTREME ULTRAVIOLET SPECTROSCOPE FOR EXOSPHERIC DYNAMICS EXPLORE (EXCEED). , 0, , 579-591.		2