Dariush Jafari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7026301/publications.pdf

Version: 2024-02-01

933447 794594 21 393 10 19 citations h-index g-index papers 21 21 21 343 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Adsorption of formaldehyde from aqueous solution using activated carbon prepared from <i>Hibiscus rosa-sinensis</i> . International Journal of Environmental Analytical Chemistry, 2022, 102, 2979-3001.	3.3	24
2	Adsorption of Nickel(II) Ions from Synthetic Wastewater Using Activated Carbon Prepared from Mespilus germanica Leaf. Arabian Journal for Science and Engineering, 2022, 47, 6155-6166.	3.0	14
3	Heterogeneous aluminum oxide/calcium oxide catalyzed transesterification of <scp><i>Mespilus germanica</i></scp> triglyceride for biodiesel production. Environmental Progress and Sustainable Energy, 2022, 41, e13738.	2.3	6
4	Highly efficient removal of toxic ions by the activated carbon derived from Citrus limonÂtree leaves. Carbon Letters, 2021, 31, 509-521.	5.9	19
5	Optimization of temperature and molar flow ratios of triglyceride/alcohol in biodiesel production in a batch reactor. Biofuels, 2020, 11, 261-267.	2.4	4
6	Prediction of a wellhead separator efficiency and risk assessment in a gas condensate reservoir. Chemometrics and Intelligent Laboratory Systems, 2020, 204, 104084.	3.5	3
7	Heavy metal ions (lead, cobalt, and nickel) biosorption from aqueous solution onto activated carbon prepared from Citrus limetta leaves. Carbon Letters, 2020, 30, 683-698.	5.9	45
8	Effect of interfering ions on phosphate removal from aqueous media using magnesium oxide@ferric molybdate nanocomposite. Korean Journal of Chemical Engineering, 2020, 37, 804-814.	2.7	28
9	Biodiesel production from beef tallow using the barium oxide catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128, 723-738.	1.7	9
10	Adsorption of Lead and Arsenic Ions from Aqueous Solution by Activated Carbon Prepared from Tamarix Leaves. ChemistrySelect, 2019, 4, 12356-12367.	1.5	32
11	Experimental Study on Heat Insulation Performance of Ceramic Additives Paint (CAP) in an Indoor Closed Media. Silicon, 2018, 10, 2341-2351.	3.3	2
12	Prediction of thiophene removal from diesel using [BMIM][AlCl4] in EDS Process: GA-ANFIS and PSO-ANFIS modeling. Petroleum Science and Technology, 2018, 36, 1305-1311.	1.5	10
13	A kinetic modeling of particle formation by gas antisolvent process: Precipitation of aspirin. Journal of Dispersion Science and Technology, 2017, 38, 677-685.	2.4	5
14	Prediction of Photocatalytic Activity of TiO2 Thin Films Doped by SiO2 using Artificial Neural Network and Fuzzy Model Approach. Recent Innovations in Chemical Engineering, 2017, 10, .	0.4	1
15	Simulation of mercury bioremediation from aqueous solutions using artificial neural network, adaptive neuro-fuzzy inference system, and response surface methodology. Desalination and Water Treatment, 2015, 55, 1467-1479.	1.0	4
16	Gas-Antisolvent (GAS) Crystallization of Aspirin Using Supercritical Carbon Dioxide: Experimental Study and Characterization. Industrial & Engineering Chemistry Research, 2015, 54, 3685-3696.	3.7	27
17	Assessing and optimization of pipeline system performance using intelligent systems. Journal of Natural Gas Science and Engineering, 2014, 18, 64-76.	4.4	55
18	Prediction of temperature performance of a two-phase closed thermosyphon using Artificial Neural Network. Heat and Mass Transfer, 2013, 49, 65-73.	2.1	38

DARIUSH JAFARI

#	Article	IF	CITATIONS
19	Prediction of MEUF process performance using artificial neural networks and ANFIS approaches. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 558-565.	5.3	55
20	Study on a new adsorbent for biosorption of cadmium ion from aqueous solution by activated carbon prepared from Ricinus communis., 0, 191, 140-152.		9
21	Biosorption of arsenic ions from the aqueous solutions using Chlorella vulgaris microalgae. , 0, 165, 188-196.		3