Leonid G Voskressensky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7025842/publications.pdf Version: 2024-02-01

		279798	276875
206	2,753	23	41
papers	citations	h-index	g-index
235	235	235	2247
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis of 8-phenyl substituted 3-benzazecines with allene moiety, their thermal rearrangement and evaluation as acetylcholinesterase inhibitors. Molecular Diversity, 2022, 26, 1243-1247.	3.9	4
2	A Threeâ€Component Synthesis of 3â€Functionally Substituted 5,6â€Dihydropyrrolo[2,1â€ <i>a</i>]isoquinolines. Chemistry and Biodiversity, 2022, 19, e2100584.	2.1	5
3	2â€(Alkynyl)anilines and Derivatives — Versatile Reagents for Heterocyclic Synthesis. Advanced Synthesis and Catalysis, 2022, 364, 466-486.	4.3	10
4	Facile synthesis of Co3O4@SiO2/Carbon Nanocomposite Catalysts from Rice Husk for Low-Temperature CO Oxidation. Molecular Catalysis, 2022, 518, 112053.	2.0	4
5	Assembly of 1,2,3,4-Tetrahydropyrrolo[1,2-a]pyrazines via the Domino Reaction of 2-Imidazolines and Terminal Electron-Deficient Alkynes. Journal of Organic Chemistry, 2022, , .	3.2	5
6	Green synthesis of polysubstituted pyrroles through a domino sequence of aza-Claisen rearrangement/nucleophilic addition/oxidation/acylation. AIP Conference Proceedings, 2022, , .	0.4	0
7	Synthesis and photophysical properties of novel oxadiazole substituted BODIPY fluorophores. New Journal of Chemistry, 2022, 46, 5725-5729.	2.8	4
8	Three-component synthesis of 5,6-dihydropyrrolo[2,1-a]isoquinolines from 1-aroyl-3,4-dihydroisoquinolines, electron-deficient alkynes and NH-acids. Tetrahedron Letters, 2022, 103, 153991.	1.4	5
9	Facile synthesis of pyrrolo[2,1-a]isoquinolines by domino reaction of 1-aroyl-3,4-dihydroisoquinolines with conjugated ketones, nitroalkenes and nitriles. Molecular Diversity, 2021, 25, 2441-2446.	3.9	2
10	Evaluation of Waterâ€Soluble Mannich Base Prodrugs of 2,3,4,5â€Tetrahydroazepino[4,3â€ <i>b</i>]indolâ€1(6 <i>H</i>)â€one as Multitargetâ€Directed Agents for Alzheimer's Disease. ChemMedChem, 2021, 16, 589-598.	3.2	19
11	Three-Component Reactions of 3-Arylidene-3H-Indolium Salts, Isocyanides and Amines. Molecules, 2021, 26, 2402.	3.8	2
12	Alkylation of in situ generated imines via photoactivation of strong aliphatic C-H bonds. Molecular Catalysis, 2021, 514, 111841.	2.0	7
13	Synthetic Strategies in the Preparation of Phenanthridinones. Molecules, 2021, 26, 5560.	3.8	12
14	Synthesis and spectroscopic properties of rotamers in the series of 2-(fluoroaryl)-4-substituted pyrroles. Journal of Fluorine Chemistry, 2021, 249, 109863.	1.7	2
15	Insights into the binding interaction mechanism of 12,12-dihydrochromeno[2,3-c]isoquinolin-5-amine in bovine serum albumin and prostaglandin H2 synthase-1: A biophysical approach. Journal of Molecular Structure, 2021, 1245, 131131.	3.6	5
16	Homobivalent Lamellarin-Like Schiff Bases: In Vitro Evaluation of Their Cancer Cell Cytotoxicity and Multitargeting Anti-Alzheimer's Disease Potential. Molecules, 2021, 26, 359.	3.8	7
17	Away from Flatness: Unprecedented Nitrogen-Bridged Cyclopenta[<i>a</i>]indene Derivatives as Novel Anti-Alzheimer Multitarget Agents. ACS Chemical Neuroscience, 2021, 12, 340-353.	3.5	8
18	Supported phosphine free bis-NHC palladium pincer complex: An efficient reusable nanocatalyst for Suzuki-Miyaura coupling reaction. Molecular Catalysis, 2021, 515, 111928.	2.0	5

#	Article	IF	CITATIONS
19	Highly ordered mesoporous functionalized pyridinium protic ionic liquid framework as a highly efficient catalytic system in chemoselective thioacetalization of carbonyl compounds under solvent-free conditions. Molecular Catalysis, 2021, 515, 111919.	2.0	4
20	Highly efficient and selective aqueous aerobic oxidation of sulfides to sulfoxides or sulfones catalyzed by tungstate-functionalized nanomaterial. Molecular Catalysis, 2021, 515, 111931.	2.0	5
21	Methyl (2E)-3-[3-Benzyl-2-(3-methoxy-3-oxoprop-1-yn-1-yl)-2-(1-naphthyl)imidazolidin-1-yl]acrylate. MolBank, 2021, 2021, M1176.	0.5	0
22	Heterogeneous Catalysis to Drive the Waste-to-Pharma Concept: From Furanics to Active Pharmaceutical Ingredients. Molecules, 2021, 26, 6738.	3.8	3
23	Metal–Organic Frameworks (MOFs) for Cancer Therapy. Materials, 2021, 14, 7277.	2.9	44
24	Synthesis and cytotoxicity of novel 1-arylindolizines and 1-arylpyrrolo[2,1-a]isoquinolines. Tetrahedron Letters, 2021, 87, 153552.	1.4	6
25	Cytosine Palladium Complex Supported on Ordered Mesoporous Silica as Highly Efficient and Reusable Nanocatalyst for One-Pot Oxidative Esterification of Aldehydes. Catalysts, 2021, 11, 1482.	3.5	3
26	Recent Advances for the Synthesis of Nâ€Unsubstituted Pyrroles. ChemistrySelect, 2021, 6, 13740-13772.	1.5	7
27	Cyclopentene Assembly by Microwave-Assisted Domino Reaction of Donor–Acceptor Cyclopropanes with Ketals. Synlett, 2020, 31, 295-299.	1.8	7
28	Photoredox-Catalyzed Hydrosulfonylation of Arylallenes. Journal of Organic Chemistry, 2020, 85, 2250-2259.	3.2	29
29	[3+2] Anionic Cycloaddition of Isocyanides to Acyclic Enamines and Enaminones: A New, Simple, and Convenient Method for the Synthesis of 2,4â€Disubstituted Pyrroles. European Journal of Organic Chemistry, 2020, 2020, 1108-1113.	2.4	15
30	Reductive domino reaction to access chromeno[2,3-c]isoquinoline-5-amines with antiproliferative activities against human tumor cells. Bioorganic Chemistry, 2020, 104, 104169.	4.1	3
31	Synthesis of 2-aminochromene derivatives from 1-(2-imino-2H-chromen-3-yl)pyridin-1-ium perchlorates and nitromethane in basic medium. Chemistry of Heterocyclic Compounds, 2020, 56, 1161-1166.	1.2	1
32	Scouting around 1,2,3,4â€Tetrahydrochromeno[3,2―c]pyridinâ€10â€ones for Single―and Multitarget Ligands Directed towards Relevant Alzheimer's Targets. ChemMedChem, 2020, 15, 1947-1955.	⁵ 3.2	8
33	Recent Advances in the Chemistry of Isocyanides with Activated Methylene Group. European Journal of Organic Chemistry, 2020, 2020, 7284-7303.	2.4	17
34	Microwave-Assisted Synthesis of Fluorescent Pyrido[2,3-b]indolizines from Alkylpyridinium Salts and Enaminones. Molecules, 2020, 25, 4059.	3.8	7
35	Facile Synthesis and Biological Evaluation of New Thieno[2,3â€g]indolizine Derivatives. ChemistrySelect, 2020, 5, 10821-10826.	1.5	4
36	Recent Developments in Transition-Metal Catalyzed Direct C–H Alkenylation, Alkylation, and Alkynylation of Azoles. Molecules, 2020, 25, 4970.	3.8	26

#	Article	IF	CITATIONS
37	Efficient synthesis of imino-1,3-thiazinan-4-one promoted by acetonitrile electrogenerated base and computational studies with CB1 and 11 βHSD1 molecules. Research on Chemical Intermediates, 2020, 46, 5535-5545.	2.7	2
38	Microwave-assisted sequential three-component synthesis of pyrrolyl-substituted chromeno[2,3-c]isoquinolin-5-amines. Chemistry of Heterocyclic Compounds, 2020, 56, 495-498.	1.2	2
39	A Domino Route toward Polysubstituted Pyrroles from 2-Imidazolines and Electron-Deficient Alkynes. Organic Letters, 2020, 22, 4726-4731.	4.6	22
40	1-Benzyl-2-(thien-2-yl)-4,5-dihydro-1H-imidazole. MolBank, 2020, 2020, M1137.	0.5	2
41	Unusual Transformations of Cyclic Allenes with an Enamine Moiety into Complex Frameworks. Synlett, 2020, 31, 672-676.	1.8	5
42	Catalytic Electrosynthesis of <i>N</i> , <i>O</i> â€Heterocycles – Recent Advances. European Journal of Organic Chemistry, 2020, 2020, 2012-2027.	2.4	20
43	Understanding the binding information of 1-imino-1,2-dihydropyrazino[1,2-a]indol-3(4H)-one in bovine serum albumin, 5-hydroxytryptamine receptor 1B and human carbonic anhydrase I: A biophysical approach. Journal of Molecular Liquids, 2020, 304, 112793.	4.9	9
44	Aza-Henry and aza-Knoevenagel reactions of nitriles for the synthesis of pyrido[1,2-a]indoles. Chemical Communications, 2020, 56, 6527-6530.	4.1	11
45	A Facile Oneâ€Pot Synthesis of 1,2,3,4â€Tetrahydroisoquinolineâ€1â€carbonitriles via the Electrogenerated Cyanide Anions from Acetonitrile. ChemistrySelect, 2020, 5, 4493-4495.	1.5	4
46	Total synthesis of hamacanthin B class marine bisindole alkaloids. Chemistry of Heterocyclic Compounds, 2020, 56, 331-338.	1.2	3
47	Facile Methods for the Synthesis of 8‥lideneâ€1,2,3,8â€ŧetrahydrobenzazecines. European Journal of Organic Chemistry, 2020, 2020, 3041-3049.	2.4	9
48	Highly Fluorescent Pyrido[2,3â€ <i>b</i>]indolizineâ€10â€Carbonitriles through Pseudo Threeâ€Component Reactions of <i>N</i> â€(Cyanomethyl)pyridinium Salts. European Journal of Organic Chemistry, 2019, 2019, 6770-6775.	2.4	10
49	Michael addition to 3-(2-nitrovinyl)indoles – route toward aliphatic nitro compounds with heterocyclic substituents. Chemistry of Heterocyclic Compounds, 2019, 55, 541-546.	1.2	5
50	Visible light-mediated chemistry of indoles and related heterocycles. Chemical Society Reviews, 2019, 48, 4401-4423.	38.1	210
51	New approaches to the synthesis of benzo[h]pyrroloisoquinoline derivatives. Tetrahedron Letters, 2019, 60, 151264.	1.4	6
52	Recent approaches to the synthesis of 2H-azirines. Chemistry of Heterocyclic Compounds, 2019, 55, 795-801.	1.2	11
53	Methods of synthesis of natural indoloquinolines isolated from Cryptolepis sanguinolenta. Chemistry of Heterocyclic Compounds, 2019, 55, 905-932.	1.2	17
54	Investigating 1,2,3,4,5,6-hexahydroazepino[4,3-b]indole as scaffold of butyrylcholinesterase-selective inhibitors with additional neuroprotective activities for Alzheimer's disease. European Journal of Medicinal Chemistry, 2019, 177, 414-424.	5.5	41

#	Article	IF	CITATIONS
55	Synthesis of 3,4-dihydroisoquinolines using nitroalkanes in polyphosphoric acid. Russian Chemical Bulletin, 2019, 68, 1047-1051.	1.5	4
56	Three-Component Reaction of 3-Arylidene-3H-Indolium Salts, Isocyanides, and Alcohols. Frontiers in Chemistry, 2019, 7, 345.	3.6	3
57	Understanding the Binding Mechanism of a Pyrazino[1,2â€a]indole Derivative with Calf Thymus DNA. ChemistrySelect, 2019, 4, 5214-5221.	1.5	8
58	Recent Advances in Electrochemistry for the Synthesis of N-Heterocycles. Synthesis, 2019, 51, 2455-2473.	2.3	31
59	3-benzazecine-based cyclic allene derivatives as highly potent P-glycoprotein inhibitors overcoming doxorubicin multidrug resistance. Future Medicinal Chemistry, 2019, 11, 2095-2106.	2.3	8
60	Pyrrolo[2,1- <i>a</i>]isoquinoline scaffold in drug discovery: advances in synthesis and medicinal chemistry. Future Medicinal Chemistry, 2019, 11, 2735-2755.	2.3	54
61	Convenient Synthesis of Functionalized Cyclopropa[c]coumarin-1a-carboxylates. Molecules, 2019, 24, 57.	3.8	10
62	Homophtalonitrile for Multicomponent Reactions: Syntheses and Optical Properties of <i>o</i> yanophenyl―or Indolâ€3â€ylâ€Substituted Chromeno[2,3â€ <i>c</i>]isoquinolinâ€5â€Amines. ChemistryOpen, 2019, 8, 23-30.	1.9	7
63	Recent advances in spirocyclization of indole derivatives. Chemical Society Reviews, 2018, 47, 3831-3848.	38.1	280
64	Reaction of benzyne with 1,2,3,4-tetrahydroisoquinolines as an access to 1 H -3-benzazepines. Mendeleev Communications, 2018, 28, 22-24.	1.6	3
65	Alcohol-Initiated Dinitrile Cyclization in Basic Media: A Route Toward Pyrazino[1,2-a]indole-3-Amines. Synlett, 2018, 29, 898-903.	1.8	8
66	Interaction of condensed tetrahydropyrido[4,3-d]pyrimidin-4-ones with dehydrobenzene – synthesis of 6-vinylpyrimidinones fused with five-membered heterocycle containing two or three heteroatoms. Chemistry of Heterocyclic Compounds, 2018, 54, 173-176.	1.2	2
67	Mn-mediated sequential three-component domino Knoevenagel/cyclization/Michael addition/oxidative cyclization reaction towards annulated imidazo[1,2- <i>a</i>]pyridines. Beilstein Journal of Organic Chemistry, 2018, 14, 3078-3087.	2.2	7
68	Recent Advances in Phthalan and Coumaran Chemistry. ChemistryOpen, 2018, 7, 914-929.	1.9	21
69	Synthesis of 1-(para-methoxyphenyl)tetrazolyl-Substituted 1,2,3,4-Tetrahydroisoquinolines and Their Transformations Involving Activated Alkynes. Molecules, 2018, 23, 3010.	3.8	2
70	Expanding the Reactivity of Donor–Acceptor Cyclopropanes: Synthesis of Benzannulated Five-Membered Heterocycles via Intramolecular Attack of a Pendant Nucleophilic Group. Organic Letters, 2018, 20, 7947-7952.	4.6	31
71	Post-Ugi Cyclization for the Construction of Diverse Heterocyclic Compounds: Recent Updates. Frontiers in Chemistry, 2018, 6, 557.	3.6	55
72	Domino reactions of vinyl ethynyl ketones with 1-aryl-3,4-dihydroisoquinolines — Search for selectivity. Molecular Catalysis, 2018, 461, 67-72.	2.0	14

#	Article	IF	CITATIONS
73	Gold-catalyzed post-MCR transformations towards complex (poly)heterocycles. Drug Discovery Today: Technologies, 2018, 29, 61-69.	4.0	15
74	A New Class of 1â€Arylâ€5,6â€dihydropyrrolo[2,1â€ <i>a</i>]isoquinoline Derivatives as Reversers of Pâ€Glycoproteinâ€Mediated Multidrug Resistance in Tumor Cells. ChemMedChem, 2018, 13, 1588-1596.	3.2	19
75	Unexpected cyclization of 2-(2-aminophenyl)indoles with nitroalkenes to furnish indolo[3,2-c]quinolines. Organic and Biomolecular Chemistry, 2018, 16, 4325-4332.	2.8	17
76	Gold and silver nanoparticle-catalyzed synthesis of heterocyclic compounds. Chemistry of Heterocyclic Compounds, 2018, 54, 241-248.	1.2	13
77	Palladium (II)-catalysed intramolecular C H functionalizations: Efficient synthesis of kealiinine C and analogues. Molecular Catalysis, 2018, 455, 233-238.	2.0	4
78	Transformation of 2-methyl-1-phenylethynyl-1,2,3,4-tetrahydroisoquinoline by the action of activated alkynes. Chemistry of Heterocyclic Compounds, 2018, 54, 576-580.	1.2	10
79	DBU-Catalyzed Alkyne–Imidate Cyclization toward 1-Alkoxypyrazino[1,2- <i>a</i>]indole Synthesis. Journal of Organic Chemistry, 2018, 83, 9305-9311.	3.2	17
80	Modern Trends of Organic Chemistry in Russian Universities. Russian Journal of Organic Chemistry, 2018, 54, 157-371.	0.8	68
81	Synthesis of 7â€Bromoâ€1,3â€diazapyrenes. European Journal of Organic Chemistry, 2018, 2018, 4121-4127.	2.4	5
82	Design of new anti-Alzheimer drugs: ring-expansion synthesis and synchrotron X-ray diffraction study of dimethyl 4-ethyl-11-fluoro-1,4,5,6,7,8-hexahydroazonino[5,6- <i>b</i>]indole-2,3-dicarboxylate. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 298-301.	0.5	2
83	Synthesis and Cytotoxicity of Dibenzo[(γ-aryl)pyridino]aza-17-crown-5 Ethers. Macroheterocycles, 2018, 11, 197-202.	0.5	9
84	A facile synthesis of 1-oxo-pyrrolo[2,1-a]isoquinolines. Tetrahedron Letters, 2017, 58, 877-879.	1.4	15
85	Reactions of o-Quinone Methides with Halogenated 1H-Azoles: Access to Benzo[e]azolo[1,3]oxazines. Synthesis, 2017, 49, 2286-2296.	2.3	16
86	First synthesis of heterocyclic allenes – benzazecine derivatives. New Journal of Chemistry, 2017, 41, 1902-1904.	2.8	17
87	Revision of the Structure and Total Synthesis of Topsentin C. Synthesis, 2017, 49, 2562-2574.	2.3	7
88	Synthesis of Chromenoimidazoles, Annulated with an Azaindole Moiety, through a Base-Promoted Domino Reaction of CyanoÂmethyl Quaternary Salts. Synthesis, 2017, 49, 2753-2760.	2.3	13
89	Physicochemical properties and antimicrobial activity of new spirocyclic thieno[2,3-d]pyrimidin-4(3H)-one derivatives. Chemistry of Heterocyclic Compounds, 2017, 53, 357-363.	1.2	10
90	Three-component reaction of ketals, isonitriles, and trimethylsilyl azide. Chemistry of Heterocyclic Compounds, 2017, 53, 446-450.	1.2	5

#	Article	IF	CITATIONS
91	Synthesis of chromenoimidazocarbolines by a reaction of quaternary iminium salts with o-hydroxybenzaldehydes. Chemistry of Heterocyclic Compounds, 2017, 53, 501-503.	1.2	7
92	Sequential three-component reaction of homophthalonitrile, salicylaldehydes and nitromethane. Mendeleev Communications, 2017, 27, 451-453.	1.6	12
93	Reactions of 3,4-dihydroisoquinolines and dihydrothieno[3,2-c]pyridines with benzyne. Mendeleev Communications, 2017, 27, 506-508.	1.6	4
94	Domino Reactions of 1-Aroyl-3,4-dihydroisoquinolines with α,β-Unsaturated Aldehydes. Synthesis, 2017, 49, 5251-5257.	2.3	18
95	Recent Advances in the Synthesis of Hydrogenated Azocine-ContainingÂ-Molecules. Synthesis, 2017, 49, 3801-3834.	2.3	25
96	Ring opening in 1,2,3,4-tetrahydrochromeno[3,2- c]pyridines under the action of electron-deficient alkynes. Mendeleev Communications, 2017, 27, 640-641.	1.6	7
97	Ring-expansion synthesis and crystal structure of dimethyl 4-ethyl-1,4,5,6,7,8-hexahydroazonino[5,6- <i>b</i>]indole-2,3-dicarboxylate. Acta Crystallographica Section E: Crystallographic Communications, 2017, 73, 338-340.	0.5	3
98	Unusual thermolysis of azacyclic allene under microwave conditions: crystal structure of (3RS,3aSR,8RS,8aRS)-methyl 5,6-dimethoxy-3a,10-dimethyl-1-phenyl-3,3a,8,8a-tetrahydro-3,8-(epiminomethano)cyclopenta[a]indene-2-carboxy from synchrotron X-ray diffraction. Acta Crystallographica Section E: Crystallographic	lote	0
99	Communications, 2017, 73, 1770-1773. A new approach to alkaloid-like systems: synthesis and crystal structure of 1-(2-acetyl-11-methoxy-5,6-dihydro[1,3]dioxolo[4,5- <i>g</i>]pyrrolo[2,1- <i>a</i>]isoquinolin-1-yl)propan-2-one. Acta Crystallographica Section E: Crystallographic Communications, 2017, 73, 1732-1734.	0.5	0
100	An efficient synthesis of (3-indolyl)acetonitriles by reduction of hydroxamic acids. Chemistry of Heterocyclic Compounds, 2016, 52, 299-302.	1.2	5
101	Michael addition to unprotected 3-(2-nitrovinyl)indoles under the conditions of microwave synthesis. Chemistry of Heterocyclic Compounds, 2016, 52, 923-927.	1.2	4
102	Direct reductive coupling of indoles to nitrostyrenes en route to (indol-3-yl)acetamides. RSC Advances, 2016, 6, 93881-93886.	3.6	7
103	Synthesis of benz[d]azocines (microreview). Chemistry of Heterocyclic Compounds, 2016, 52, 362-363.	1.2	3
104	Transformations of cotarnine chloride by the action of silver acetylides and alkynes. Chemistry of Heterocyclic Compounds, 2016, 52, 316-321.	1.2	3
105	Domino reactions of 1-substituted N-(cyanomethyl)isoquinolinium salts with salicylic aldehydes. Chemistry of Heterocyclic Compounds, 2016, 52, 415-420.	1.2	3
106	A novel multi-component approach to the synthesis of pyrrolo[2,1-a]isoquinoline derivatives. RSC Advances, 2016, 6, 74068-74071.	3.6	24
107	Rational design of an efficient one-pot synthesis of 6H-pyrrolo[2,3,4-gh]perimidines in polyphosphoric acid. RSC Advances, 2016, 6, 82425-82431.	3.6	18
108	Synthesis of novel fluorescent 12a-aryl substituted indoxylisoquinolines via aryne-induced domino process. RSC Advances, 2016, 6, 12642-12646.	3.6	13

#	Article	IF	CITATIONS
109	Recent Advances in Bromination of Aromatic and Heteroaromatic Compounds. Synthesis, 2016, 48, 615-643.	2.3	60
110	The first synthesis of 6-(phenylethynyl)-substituted tetrahydroazocino[5,4-b]indoles. Chemistry of Heterocyclic Compounds, 2016, 52, 68-70.	1.2	8
111	Transformations of 4-arylpyrrolo[1,2-a][1,4]benzodiazepines in three-component reactions with activated alkynes and СÐ ; NH, SH, and ОЕacids. Chemistry of Heterocyclic Compounds, 2015, 51, 639-646.	1.2	2
112	The interaction of 4-hydroxymethyl isoindolines with dehydrobenzene. Synthesis of 3-phenylaminomethyldihydrobenzo[c]furanes. Tetrahedron, 2015, 71, 1175-1181.	1.9	18
113	Domino reaction of N-(cyanomethyl)-1,3-azolium quaternary salts with o-hydroxybenzaldehydes: scope and limitations. RSC Advances, 2015, 5, 12442-12445.	3.6	5
114	Synthesis of 2-(chloro(methoxy, morpholino)methyl)-hexahydropyrimidothieno[3,2-c]azocines and tetrahydrospiro[pyrido[4,5']thieno[2,3-d]pyrimidines]. Chemistry of Heterocyclic Compounds, 2015, 51, 17-25.	1.2	8
115	A novel domino condensation—intramolecular nucleophilic cyclization approach toward annulated imidazo-pyrrolopyridines. Tetrahedron Letters, 2015, 56, 6475-6477.	1.4	8
116	A Concise Approach Toward Tetrazolyl-Substituted Benzazocines via a Novel Isocyanide-Based Multicomponent Reaction. Synlett, 2014, 25, 955-958.	1.8	11
117	The First Example of 4,7,8,9-Tetrahydrothieno-[2,3-d]Azocine Synthesis by Domino Reaction of 4-ARYL-4,5,6,7-Tetrahydrothieno[3,2-c]Pyridines with Activated Alkynes. Chemistry of Heterocyclic Compounds, 2014, 50, 1338-1345.	1.2	4
118	Transformation of 4-Substituted Tetrahydro-Pyrrolobenzodiazepines in a Three-Component Reaction With Methyl Propiolate and Indole. Chemistry of Heterocyclic Compounds, 2014, 49, 1785-1794.	1.2	6
119	Domino reactions based on Knoevenagel condensation in the synthesis of heterocyclic compounds. Recent advances. Tetrahedron, 2014, 70, 551-572.	1.9	71
120	Synthesis of 6-aryl-Substituted Azocino-[5,4-b]indoles from 1-aryl-Substituted 2-Ethyltetrahydro-β-Carbolines. Chemistry of Heterocyclic Compounds, 2014, 50, 658-669.	1.2	7
121	Transformations of 10-Substituted Tetrahydrobenzo[b][1,6]naphthyridines through Interaction with Dehydrobenzene. Chemistry of Heterocyclic Compounds, 2014, 50, 264-270.	1.2	5
122	A novel domino condensation–intramolecular nucleophilic cyclization approach towards annulated thiochromenes. Tetrahedron Letters, 2013, 54, 5172-5173.	1.4	12
123	Novel domino reaction of N-(cyanomethyl)-5,10-dihydro[1]benzosilano[3,2-c]pyridinium salts with salicylaldehydes. Chemistry of Heterocyclic Compounds, 2013, 49, 484-490.	1.2	6
124	Transformations of tetrahydro-1,4-benzoxazepines and tetrahydro-1,4-benzothiazepines under the action of alkynes. First example of the synthesis of tetrahydro-1,4-benzothiazonine-6-carboxylate. Chemistry of Heterocyclic Compounds, 2013, 49, 331-340.	1.2	8
125	Recyclization of benzofuropyridines by the action of activated alkynes in the synthesis of spiro[benzofuropyridines], representatives of a new class of acetylcholinesterase inhibitors. Chemistry of Heterocyclic Compounds, 2013, 49, 930-940.	1.2	7
126	Synthesis of 4-amino-substituted tetrahydropyrimido[4,5-d]azocines. Chemistry of Heterocyclic Compounds, 2013, 49, 1180-1187.	1.2	8

#	Article	IF	CITATIONS
127	Synthesis of pyrrolo[1,2-a][1,6]benzodiazonines from pyrrolo[1,2-a][1,4]benzodiazepines and alkynes containing electron-acceptor substituents. Chemistry of Heterocyclic Compounds, 2013, 49, 1024-1032.	1.2	14
128	1-Methyl-3-(2-oxo-2H-chromen-3-yl)-1H-imidazol-3-ium picrate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o839-o839.	0.2	1
129	Synthesis of Polycyclic Imidazo[1,4]thiazine Derivatives by an ANRORC Domino Reaction. European Journal of Organic Chemistry, 2012, 2012, 6124-6126.	2.4	11
130	Multicomponent and domino reactions in the synthesis of heterocyclic compounds. Chemistry of Heterocyclic Compounds, 2012, 48, 535-535.	1.2	3
131	Synthesis of hexahydro[1,4]diazocino[7,8,1-jk]carbazoles and 1-methoxy-9-(β-vinylethylamino)ethylcarbazoles. Chemistry of Heterocyclic Compounds, 2012, 48, 620-624.	1.2	4
132	Transformations of tetrahydropyrido[4′,3′:4,5]thieno[2,3-d]pyrimidin-4(3H)-ones in the presence of alkynes bearing electron-withdrawing substituents. Russian Chemical Bulletin, 2012, 61, 370-379.	1.5	5
133	Synthesis of chromeno[2′,3′:4,5]imidazo[2,1-a]isoquinolines via a novel domino reaction of isoquinoline-derived immonium salts. Scope and limitations. Tetrahedron, 2012, 68, 5498-5504.	1.9	19
134	First example of a new multicomponent reaction of a tetrahydropyridine ring expansion. Chemistry of Heterocyclic Compounds, 2012, 48, 680-681.	1.2	3
135	Novel Synthetic Route Toward Benzofuran-pyridine–Based Spirans. Synthetic Communications, 2012, 42, 3337-3343.	2.1	6
136	Synthesis of tetrazolodiazepines by a five-centered four-component azide Ugi reaction. Scope and limitations. Russian Chemical Bulletin, 2012, 61, 1609-1615.	1.5	11
137	On the reaction of fused benzodiazepines with alkynes containing electron-withdrawing groups. Russian Chemical Bulletin, 2012, 61, 1220-1230.	1.5	7
138	Synthesis of azecino[5,4-b]indoles and indolo[3,2-e][2]benzazonines via tandem transformation of hydrogenated indoloquinolizines and indolizines. Russian Chemical Bulletin, 2012, 61, 1231-1241.	1.5	8
139	Reactions of tetrahydropyrido[4,5-d][1,2,4]triazolo[1,5-a]-pyrimidin-4-ones with activated alkynes. Synthesis of [1,2,4]triazolo[1′,5′:1,2]pyrimido[4,5-d]azocines. Russian Chemical Bulletin, 2012, 61, 1603-1608.	1.5	5
140	Reaction of 3,3-dimethyl- and 3-spirocyclohexyl-tetrahydroisoquinolines with alkynes*. Chemistry of Heterocyclic Compounds, 2012, 48, 453-457.	1.2	0
141	2â€Benzazepine Nitrones Protect Dopaminergic Neurons against 6â€Hydroxydopamineâ€Induced Oxidative Toxicity. Archiv Der Pharmazie, 2012, 345, 598-609.	4.1	15
142	Multi-Component Reactions in Heterocyclic Chemistry. Advances in Experimental Medicine and Biology, 2011, , 31-73.	1.6	2
143	2-Alkyl-4-oxohexahydropyrimido[4,5-d]- and -[5,4-d]azocines. Chemistry of Heterocyclic Compounds, 2011, 47, 222-228.	1.2	4
144	The reaction of tetrahydrochromeno[3,4-c]pyridines with activated alkynes. The first synthesis of tetrahydrochromeno[4,3-d]azocines. Tetrahedron Letters, 2011, 52, 4189-4191.	1.4	9

#	Article	IF	CITATIONS
145	Investigation on the antiplatelet activity of pyrrolo[3,2-c]pyridine-containing compounds. Journal of Pharmacy and Pharmacology, 2010, 55, 323-332.	2.4	11
146	Concise Approach toward Tetrazolo[1,5- <i>a</i>][1,4]benzodiazepines via a Novel Multicomponent Isocyanide-Based Condensation. Organic Letters, 2010, 12, 3894-3897.	4.6	64
147	The chemistry of the tandem reaction of 1-aryltetrahydrobenzothieno[2,3-c]pyridines with activated alkynes. Chemistry of Heterocyclic Compounds, 2010, 46, 354-355.	1.2	1
148	Formation of spiro[benzothieno-3,4'-pyridines] by the reaction of benzothieno[2,3-c]pyridines with acetylene dicarboxylic ester. Chemistry of Heterocyclic Compounds, 2010, 46, 356-357.	1.2	3
149	Transformations of nitro-substituted dihydroisoindoles in reactions with activated alkynes. Chemistry of Heterocyclic Compounds, 2010, 46, 625-626.	1.2	3
150	Transformation of 2-ethyl-1-m-fluoro-phenyl-β-carboline by the action of dimethyl acetylenedicarboxylate in the presence of indoles. New method of synthesis of bisindolylarylmethanes. Chemistry of Heterocyclic Compounds, 2010, 46, 1013-1015.	1.2	2
151	1,2,3,6-Tetrahydropyrrolo[1,2-d][1,4]diazocines. Reactions of 1-methyl-2-R-tetrahydropyrrolo[1,2-a]pyrazines with alkynes. Russian Chemical Bulletin, 2010, 59, 647-653.	1.5	3
152	The first synthesis of tetrahydrobenzo[b]pyrrolo[2,1-f][1,6]naphthyridine by the Michael addition of butyn-2-one to 1-(2-methoxycarbonylvinyl)tetrahydrobenzo[b][1,6]naphthyridine. Russian Chemical Bulletin, 2010, 59, 1063-1064.	1.5	2
153	A novel synthesis of pyrrolo[1,2-d][1,4]diazocines from tetrahydropyrrolo[1,2-a]pyrazines using activated alkynes in pyrazine ring expansion. Tetrahedron, 2010, 66, 5140-5148.	1.9	8
154	Tandem transformations of tetrahydrobenzothieno[2,3-c]pyridines in the presence of activated alkynes. Tetrahedron, 2010, 66, 9421-9430.	1.9	17
155	A new approach towards the synthesis of pyrrolo[2,1-a]isoquinolines. Tetrahedron Letters, 2010, 51, 840-842.	1.4	30
156	A novel cascade Kröhnke condensation—an intramolecular nucleophilic cyclization approach toward annulated chromenes. Tetrahedron Letters, 2010, 51, 2269-2270.	1.4	14
157	8H-Chromeno[2′,3′:4,5]imidazo[2,1-a]isoquinoline. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o710-o710.	0.2	1
158	A novel alkyne-induced recyclization of 4-hydroxymethyl or 4-formyl-1H-2,3-dihydroisoindoles—an effective pathway to substituted isobenzofurans. Tetrahedron Letters, 2009, 50, 4851-4853.	1.4	8
159	Interaction of 4-hydroxymethyl- 2-(3,4-dimethoxybenzyl)isoindoline with methyl propiolate. Chemistry of Heterocyclic Compounds, 2009, 45, 372-374.	1.2	2
160	Conversion of 2-ethyl-3,3,5,5-tetramethyl- and 2-ethyl-1,3,3,5,5-pentamethyl-1,2,4,5-tetra-hydro-3h-benz-2-azepines by the action of ethyl propiolate. Chemistry of Heterocyclic Compounds, 2009, 45, 1248-1251.	1.2	1
161	Silica-sulfuric acid: a highly efficient catalyst for the synthesis of imidazo[1,2-a]pyridines using trimethysilyl cyanide or cyanohydrins. Tetrahedron Letters, 2009, 50, 4389-4393.	1.4	31
162	First example of the synthesis of pyrrolo[1,2-d][1,4]diazocine by the reaction of tetrahydropyrrolo[1,2-a]pyrazines with activated alkynes. Chemistry of Heterocyclic Compounds, 2008, 44, 634-636.	1.2	2

#	Article	IF	CITATIONS
163	Transformations of tetrahydro-pyrido[4,3-d]pyrimidines [b]-condensed with isoxazole, thiazole, thiaidiazole, and triazole units under the action of activated alkynes. Chemistry of Heterocyclic Compounds, 2008, 44, 1510-1519.	1.2	9
164	Tandem transformations of 10-substituted tetrahydrobenzo[b][1,6]naphthyridines resulted from the Michael addition of the nitrogen atom of the tetrahydropyridine fragment to the triple bond of activated alkynes. Russian Chemical Bulletin, 2008, 57, 1547-1558.	1.5	3
165	First example of the groebke mcr using hydoxybenzal dehydes and substituted 2â€aminopyrimidines. Journal of Heterocyclic Chemistry, 2008, 45, 1589-1596.	2.6	9
166	The first example of tetrahydrothieno[3,2-d]azocines synthesis. Tetrahedron, 2008, 64, 10443-10452.	1.9	20
167	Inhibition of 6-hydroxydopamine-induced oxidative damage by 4,5-dihydro-3H-2-benzazepine N-oxides. Biochemical Pharmacology, 2008, 75, 1526-1537.	4.4	26
168	Chapter 2 Synthesis of Heteroannulated Azocine Derivatives. Advances in Heterocyclic Chemistry, 2008, , 81-122.	1.7	21
169	Synthesis and Reactivity of a Novel Class of Long-Lived Ammonium Ylides: Derivatives of Benzo[b]pyrrolo[2,1-f][1.6]naphthyridine. Journal of Organic Chemistry, 2008, 73, 4596-4601.	3.2	15
170	Synthesis of Benzoazocines from Substituted Tetrahydroisoquinolines and Activated Alkynes in a Tetrahydropyridine Ring Expansion. European Journal of Organic Chemistry, 2007, 2007, 6106-6117.	2.4	30
171	Transformations of 4,5,6,7-tetrahydrothieno[3,2-c]-and 1,2,3,4-tetrahydrobenzothieno[2,3-c]pyridines in reactions with alkynes activated by electron-withdrawing substituents. Russian Chemical Bulletin, 2007, 56, 1041-1048.	1.5	5
172	Synthesis of hexahydroazonino[5,6-b]indoles from hexahydroazepino[4,3-b]-and-[3,4-b]indoles and activated alkynes. Russian Chemical Bulletin, 2007, 56, 2323-2329.	1.5	7
173	Reaction of 1-substituted tetrahydro-β-carbolines with activated alkynes-a new original approach to the synthesis of tetrahydroazocino[5,4-b]indoles. Chemistry of Heterocyclic Compounds, 2007, 43, 587-598.	1.2	12
174	Tandem cleavage of 2,3,5-trimethyl 7-trifluoroacetyl-1,2,3,4-tetrahydro-pyrrolo[1,2-c]pyrimidine by activated alkynes, caused by Michael addition of a tertiary nitrogen atom to a triple bond. Chemistry of Heterocyclic Compounds, 2007, 43, 913-918.	1.2	4
175	Ester derivatives of annulated tetrahydroazocines: A new class of selective acetylcholinesterase inhibitors. Bioorganic and Medicinal Chemistry, 2006, 14, 7205-7212.	3.0	30
176	A novel synthesis of hexahydroazoninoindoles using activated alkynes in an azepine ring expansion. Tetrahedron, 2006, 62, 12392-12397.	1.9	31
177	Tetrahydropyridine (THP) ring expansion under the action of activated terminal alkynes. The first synthesis and X-ray crystal structure of tetrahydropyrimido[4,5-d]azocines. Tetrahedron Letters, 2006, 47, 999-1001.	1.4	23
178	Tandem enlargement of the tetrahydropyridine ring in 1-aryl-tetrahydroisoquinolines using activated alkynes—a new and effective synthesis of benzoazocines. Tetrahedron Letters, 2006, 47, 4585-4589.	1.4	21
179	Transformations of 2-trifluoroacetyl-4,5,6,7-tetrahydro-1H-pyrrolo[3,2-c]pyridines by the action of ethyl propynoate. A novel synthesis of 2-trifluoroacetyl-4,7,8,9-tetrahydro-1H-pyrrolo[2,3-d]azocines. Russian Journal of Organic Chemistry, 2006, 42, 1851-1855.	0.8	4
180	First Synthesis and X-Ray Crystal Structure of Hexahydrobenzo[b]pyrido[3,4,5-de]-1,6-naphthyridines ChemInform, 2006, 37, no.	0.0	0

#	Article	IF	CITATIONS
181	Transformations of tetrahydrobenzo[b][1,6]naphthyridines and tetrahydropyrido[4,3-b]pyrimidines under the action of dimethyl acetylene dicarboxylate. Tetrahedron Letters, 2005, 46, 1975-1979.	1.4	12
182	First synthesis and x-ray crystal structure of hexahydrobenzo[b]pyrido[3,4,5-de]-1,6-naphthyridines. Journal of Heterocyclic Chemistry, 2005, 42, 1207-1210.	2.6	7
183	Interaction of 4,5,7-Trimethyl-4,5,6,7-tetrahydropyrrolo[3,2-c]pyridines with Acetic and Trifluoroacetic Anhydrides. Chemistry of Heterocyclic Compounds, 2005, 41, 647-655.	1.2	1
184	Novel Approach to Synthesis of Tetrahydrobenzo[b]thieno[3,2-d]azocines. Chemistry of Heterocyclic Compounds, 2005, 41, 944-945.	1.2	3
185	Tandem transformations of tetrahydropyrrolo[3,2-c]pyridines under the action of dimethyl acetylenedicarboxylate. A novel route to pyrrolo[2,3-d]azocines. Russian Chemical Bulletin, 2005, 54, 2594-2601.	1.5	11
186	First Efficient One-Pot Synthesis of Tetrahydropyrrolo[2,3-d]azocines and Tetrahydroazocino[4,5-b]indoles. Letters in Organic Chemistry, 2005, 2, 18-20.	0.5	16
187	An Efficient Synthesis of Hexahydro Oxaisoindolo[2,1-a]Quinoline Derivatives via the Diels-Alder Reactions. Letters in Organic Chemistry, 2004, 1, 37-39.	0.5	8
188	Synthesis and Some Chemical Conversions of 2-([2,2]-5-Paracyclophanyl)pyrrole. Chemistry of Heterocyclic Compounds, 2004, 40, 166-176.	1.2	4
189	Heterocyclization of Oximes of 3,5-Dimethyl(1,3,5-trimethyl)-2,6-diphenylpiperid-4-ones and N-Benzylpyrrolid-3-ones with Acetylene in a Superbasic Medium. Chemistry of Heterocyclic Compounds, 2004, 40, 326-333.	1.2	5
190	Unusual Reaction of 5-Ethyl-4,5,6,7-tetrahydrothieno[3,2-c]pyridine with Ethyl Propiolate. Chemistry of Heterocyclic Compounds, 2004, 40, 519-520.	1.2	2
191	Reaction of 10-Cyanotetrahydrobenzo[b][1,6]naphthyridines with Acetylenedicarboxylic Ester. Chemistry of Heterocyclic Compounds, 2004, 40, 1226-1227.	1.2	1
192	Intramolecular cyclization of 5-aryl-3-arylamino-4-benzoyl-1h-3-pyrrolin-2-ones to pyrrolo[3,4-b]quinolines. Chemistry of Heterocyclic Compounds, 2004, 40, 1332-1334.	1.2	6
193	Tandem Cleavage of Hydrogenatedβ- andγ-Carbolinesâ^' New Practical Synthesis of Tetrahydroazocino[4,5-b]indoles and Tetrahydroazocino[5,4-b]indoles Showing Acetylcholinesterase Inhibitory Activity. European Journal of Organic Chemistry, 2004, 2004, 3128-3135.	2.4	62
194	Cleavage of Some Annulated Tetrahydropyridines under the Action of Dimethyl Acetylene Dicarboxylate in Protic Solvents. New Practical Route to Substituted Pyrroles and Indoles ChemInform, 2004, 35, no.	0.0	0
195	Acetylation and Trifluoroacetylation Reactions of Tetrahydropyrrolo[3,2-c]pyridines ChemInform, 2003, 34, no.	0.0	0
196	Hydrogenated Pyrrolopyridines. Synthesis and Reactivity. Synthesis, 2002, 2002, 0155.	2.3	14
197	Acetylation and trifluoroacetylation reactions of tetrahydropyrrolo[3,2-c]pyridines. Mendeleev Communications, 2002, 12, 162-163.	1.6	4
198	The first synthesis and X-ray crystal structure of tetrahydropyrrolo[2,3-d]azocines. Tetrahedron Letters, 2002, 43, 6767-6769.	1.4	30

#	Article	IF	CITATIONS
199	Title is missing!. Chemistry of Heterocyclic Compounds, 2001, 37, 1048-1049.	1.2	2
200	TANDEM MICHAEL ADDITION - HOFFMAN ELIMINATION SEQUENCE OF DMAD ON TETRAHYDROPYRROLO[3,2-C]PYRIDINES. NEW ROUTE TO VINYLPYRROLES Heterocyclic Communications, 2001, 7, .	1.2	12
201	Pyrrolo[3,2- c]pyridine derivatives as inhibitors of platelet aggregation. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 581-584.	2.2	19
202	Cleavage of some annulated tetrahydropyridines under the action of dimethyl acetylene dicarboxylate in protic solvents. New practical route to substituted pyrroles and indoles. Molecular Diversity, 2000, 6, 207-212.	3.9	12
203	Heterocyclization of tropinone oximes and 3-methyl-3-azabicyclo[3.3.1.]-nonan-9-one with acetylene in a superbasic medium. Chemistry of Heterocyclic Compounds, 1999, 35, 613-616.	1.2	12
204	Unusual [3+2]-cycloaddition of acrylic acid derivatives to 7-formyl-4,5,6,7-tetrahydro-4,5,7-trimethylpyrrolo[3,2-c]pyridine under Michael reaction conditions. Chemistry of Heterocyclic Compounds, 1998, 34, 1418-1422.	1.2	2
205	Electrophilic rearrangement of N-H-tretrahydro-3H-pyrrolo[3,2-c]pyridine to N-methyltetrahydropyrrolo[3,2-c]pyridine under Trofimov reaction conditions. Chemistry of Heterocyclic Compounds, 1995, 31, 123-123.	1.2	0
206	Switchable light vs acid-induced transformations of complex framework compounds at room temperature. Green Chemistry, 0, , .	9.0	2