
Theodore B Henry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7025552/publications.pdf Version: 2024-02-01

THEODORE R HENRY

#	Article	IF	CITATIONS
1	Microcystin-LR at sublethal concentrations induce rapid morphology of liver and muscle tissues in the fish species Astyanax altiparanae (Lambari). Toxicon, 2022, 211, 70-78.	0.8	4
2	Transgenic zebrafish larvae as a non-rodent alternative model to assess pro-inflammatory (neutrophil) responses to nanomaterials. Nanotoxicology, 2022, 16, 333-354.	1.6	5
3	Neutrophil activation by nanomaterials inÂvitro: comparing strengths and limitations of primary human cells with those of an immortalized (HL-60) cell line. Nanotoxicology, 2021, 15, 1-20.	1.6	19
4	Time-Related Alteration of Aqueous-Phase Anthracene and Phenanthrene Photoproducts in the Presence of TiO ₂ Nanoparticles. Environmental Science & Technology, 2021, 55, 3727-3735.	4.6	3
5	Risk posed by microplastics: Scientific evidence and public perception. Current Opinion in Green and Sustainable Chemistry, 2021, 29, 100467.	3.2	35
6	Antibacterial Activities of Ga(III) against E.Âcoli Are Substantially Impacted by Fe(III) Uptake Systems and Multidrug Resistance in Combination with Oxygen Levels. ACS Infectious Diseases, 2020, 6, 2959-2969.	1.8	7
7	Return to sender: The influence of larval behaviour on the distribution and settlement of the European oyster <scp> <i>Ostrea edulis</i> </scp> . Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 2116-2132.	0.9	14
8	Synthesis of 14C-labelled polystyrene nanoplastics for environmental studies. Communications Materials, 2020, 1, .	2.9	29
9	Exposure to Pb-halide perovskite nanoparticles can deliver bioavailable Pb but does not alter endogenous gut microbiota in zebrafish. Science of the Total Environment, 2020, 715, 136941.	3.9	21
10	Polyvinyl chloride (PVC) plastic fragments release Pb additives that are bioavailable in zebrafish. Environmental Pollution, 2020, 263, 114422.	3.7	89
11	Transcriptome analysis in Parhyale hawaiensis reveal sex-specific responses to AgNP and AgCl exposure. Environmental Pollution, 2020, 260, 113963.	3.7	13
12	Conservation and restoration of a keystone species: Understanding the settlement preferences of the European oyster (Ostrea edulis). Marine Pollution Bulletin, 2019, 138, 312-321.	2.3	46
13	Toxicity of Cyanopeptides from Two Microcystis Strains on Larval Development of Astyanax altiparanae. Toxins, 2019, 11, 220.	1.5	22
14	Use of fluorescent-labelled nanoplastics (NPs) to demonstrate NP absorption is inconclusive without adequate controls. Science of the Total Environment, 2019, 670, 915-920.	3.9	122
15	Microplastic contamination in surface waters in Guanabara Bay, Rio de Janeiro, Brazil. Marine Pollution Bulletin, 2019, 139, 157-162.	2.3	83
16	Higher silver bioavailability after nanoparticle dietary exposure in marine amphipods. Environmental Toxicology and Chemistry, 2019, 38, 806-810.	2.2	10
17	Differences in Engineered Nanoparticle Surface Physicochemistry Revealed by Investigation of Changes in Copper Bioavailability During Sorption to Nanoparticles in the Aqueous Phase. Environmental Toxicology and Chemistry, 2019, 38, 925-935.	2.2	3
18	Agglomeration of nano- and microplastic particles in seawater by autochthonous and de novo-produced sources of exopolymeric substances. Marine Pollution Bulletin, 2018, 130, 258-267.	2.3	137

THEODORE B HENRY

#	Article	IF	CITATIONS
19	Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environmental Pollution, 2018, 237, 675-684.	3.7	490
20	Intravenous injection of unfunctionalized carbon-based nanomaterials confirms the minimal toxicity observed in aqueous and dietary exposures in juvenile rainbow trout (Oncorhynchus mykiss). Environmental Pollution, 2018, 232, 191-199.	3.7	5
21	Adoption of <i>in vitro</i> systems and zebrafish embryos as alternative models for reducing rodent use in assessments of immunological and oxidative stress responses to nanomaterials. Critical Reviews in Toxicology, 2018, 48, 252-271.	1.9	46
22	Development of an acute toxicity test with the tropical marine amphipod Parhyale hawaiensis. Ecotoxicology, 2018, 27, 103-108.	1.1	27
23	Uptake, Whole-Body Distribution, and Depuration of Nanoplastics by the Scallop <i>Pecten maximus</i> at Environmentally Realistic Concentrations. Environmental Science & Technology, 2018, 52, 14480-14486.	4.6	261
24	Potential Impacts of Offshore Oil and Gas Activities on Deep-Sea Sponges and the Habitats They Form. Advances in Marine Biology, 2018, 79, 33-60.	0.7	19
25	Assessment of microplastic-sorbed contaminant bioavailability through analysis of biomarker gene expression in larval zebrafish. Marine Pollution Bulletin, 2017, 116, 291-297.	2.3	157
26	Response of gene expression in zebrafish exposed to pharmaceutical mixtures: Implications for environmental risk. Ecotoxicology and Environmental Safety, 2017, 142, 471-479.	2.9	29
27	Toxicant induced behavioural aberrations in larval zebrafish are dependent on minor methodological alterations. Toxicology Letters, 2017, 276, 62-68.	0.4	37
28	Endocrine disruptors affect larval zebrafish behavior: Testing potential mechanisms and comparisons of behavioral sensitivity to alternative biomarkers. Aquatic Toxicology, 2017, 193, 128-135.	1.9	40
29	Author Gender and Career Progression in <i>Environmental Science & Technology</i> . Environmental Science & Technology, 2017, 51, 9417-9418.	4.6	Ο
30	Development and optimization of a standard method for extraction of microplastics in mussels by enzyme digestion of soft tissues. Environmental Toxicology and Chemistry, 2017, 36, 947-951.	2.2	228
31	Occurrence and risk assessment of an azo dye – The case of Disperse Red 1. Chemosphere, 2016, 156, 95-100.	4.2	49
32	Differentially transcriptional regulation on cell cycle pathway by silver nanoparticles from ionic silver in larval zebrafish (Danio rerio). Biochemical and Biophysical Research Communications, 2016, 479, 753-758.	1.0	9
33	Sublethal effects of copper sulphate compared to copper nanoparticles in rainbow trout (Oncorhynchus mykiss) at low pH: physiology and metal accumulation. Aquatic Toxicology, 2016, 174, 188-198.	1.9	39
34	Aqueous Hg2+ associates with TiO2 nanoparticles according to particle size, changes particle agglomeration, and becomes less bioavailable to zebrafish. Aquatic Toxicology, 2016, 174, 242-246.	1.9	23
35	Use of an exposure chamber to maintain aqueous phase nanoparticle dispersions for improved toxicity testing in fish. Environmental Toxicology and Chemistry, 2015, 34, 583-588.	2.2	20
36	Fate and toxic effects of environmental stressors: environmental control. Ecotoxicology, 2015, 24, 2043-2048.	1.1	5

THEODORE B HENRY

#	Article	IF	CITATIONS
37	Potential Use of Direct Current Electric Fields to Eradicate Rainbow Trout Embryos from Freshwater Ecosystems. North American Journal of Fisheries Management, 2015, 35, 871-879.	0.5	6
38	Time-related expression profiles for heat shock protein gene transcripts (<i>HSP40, HSP70</i>) in the central nervous system of <i>Lymnaea stagnalis</i> exposed to thermal stress. Communicative and Integrative Biology, 2015, 8, e1040954.	0.6	38
39	Effects of metal nanoparticles on the lateral line system and behaviour in early life stages of zebrafish (Danio rerio). Aquatic Toxicology, 2014, 152, 318-323.	1.9	52
40	Minimal effects of waterborne exposure to single-walled carbon nanotubes on behaviour and physiology of juvenile rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 2014, 146, 154-164.	1.9	17
41	Identification and Avoidance of Potential Artifacts and Misinterpretations in Nanomaterial Ecotoxicity Measurements. Environmental Science & Technology, 2014, 48, 4226-4246.	4.6	209
42	Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in zebrafish (Danio rerio). Environmental Pollution, 2013, 174, 157-163.	3.7	115
43	Critical comparison of intravenous injection of TiO2 nanoparticles with waterborne and dietary exposures concludes minimal environmentally-relevant toxicity in juvenile rainbow trout Oncorhynchus mykiss. Environmental Pollution, 2013, 182, 70-79.	3.7	40
44	Association of Hg ²⁺ with Aqueous (C ₆₀) <i>n</i> Aggregates Facilitates Increased Bioavailability of Hg ²⁺ in Zebrafish (<i>Danio rerio</i>). Environmental Science & Technology, 2013, 47, 9997-10004.	4.6	24
45	Subtle alterations in swimming speed distributions of rainbow trout exposed to titanium dioxide nanoparticles are associated with gill rather than brain injury. Aquatic Toxicology, 2013, 126, 116-127.	1.9	84
46	Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology, 2013, 126, 104-115.	1.9	211
47	Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes: Review. Environmental Toxicology and Chemistry, 2012, 31, 60-72.	2.2	113
48	Global Gene Expression Profiling in Larval Zebrafish Exposed to Microcystin-LR and Microcystis Reveals Endocrine Disrupting Effects of Cyanobacteria. Environmental Science & Technology, 2011, 45, 1962-1969.	4.6	110
49	Dietary toxicity of single-walled carbon nanotubes and fullerenes (C ₆₀) in rainbow trout (<i>Oncorhynchus mykiss</i>). Nanotoxicology, 2011, 5, 98-108.	1.6	90
50	Potential Release Pathways, Environmental Fate, And Ecological Risks of Carbon Nanotubes. Environmental Science & Technology, 2011, 45, 9837-9856.	4.6	446
51	Aqueous fullerene aggregates (nC60) generate minimal reactive oxygen species and are of low toxicity in fish: a revision of previous reports. Current Opinion in Biotechnology, 2011, 22, 533-537.	3.3	59
52	Threeâ€Pass Depletion Sampling Accuracy of Two Electric Fields for Estimating Trout Abundance in a Lowâ€Conductivity Stream with Limited Habitat Complexity. North American Journal of Fisheries Management, 2010, 30, 757-766.	0.5	24
53	Effects of Electroshock on Cyprinid Embryos: Implications for Threatened and Endangered Fishes. Transactions of the American Fisheries Society, 2009, 138, 768-776.	0.6	17
54	Manufactured nanoparticles: their uptake and effects on fish—a mechanistic analysis. Ecotoxicology, 2008, 17, 396-409.	1.1	385

#	Article	IF	CITATIONS
55	Attributing Effects of Aqueous C 60 Nano-Aggregates to Tetrahydrofuran Decomposition Products in Larval Zebrafish by Assessment of Gene Expression. Environmental Health Perspectives, 2007, 115, 1059-1065.	2.8	229