Abdelghani Oukhaled

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7025420/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nature Biotechnology, 2020, 38, 176-181.	17.5	308
2	Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore. Nature Communications, 2018, 9, 966.	12.8	204
3	Dynamics of Completely Unfolded and Native Proteins through Solid-State Nanopores as a Function of Electric Driving Force. ACS Nano, 2011, 5, 3628-3638.	14.6	175
4	Sensing Proteins through Nanopores: Fundamental to Applications. ACS Chemical Biology, 2012, 7, 1935-1949.	3.4	164
5	Protein Transport through a Narrow Solid-State Nanopore at High Voltage: Experiments and Theory. ACS Nano, 2012, 6, 6236-6243.	14.6	126
6	Wild Type, Mutant Protein Unfolding and Phase Transition Detected by Single-Nanopore Recording. ACS Chemical Biology, 2012, 7, 652-658.	3.4	119
7	High-Resolution Size-Discrimination of Single Nonionic Synthetic Polymers with a Highly Charged Biological Nanopore. ACS Nano, 2015, 9, 6443-6449.	14.6	106
8	Probing driving forces in aerolysin and α-hemolysin biological nanopores: electrophoresis versus electroosmosis. Nanoscale, 2016, 8, 18352-18359.	5.6	78
9	Nanopore-Based Protein Identification. Journal of the American Chemical Society, 2022, 144, 2716-2725.	13.7	64
10	Dynamics and Energy Contributions for Transport of Unfolded Pertactin through a Protein Nanopore. ACS Nano, 2015, 9, 9050-9061.	14.6	52
11	Exploration of Neutral Versus Polyelectrolyte Behavior of Poly(ethylene glycol)s in Alkali Ion Solutions using Single-Nanopore Recording. Journal of Physical Chemistry Letters, 2013, 4, 2202-2208.	4.6	49
12	Electroosmosis through α-Hemolysin That Depends on Alkali Cation Type. Journal of Physical Chemistry Letters, 2014, 5, 4362-4367.	4.6	42
13	Discrimination of neutral oligosaccharides through a nanopore. Biochemical and Biophysical Research Communications, 2011, 412, 561-564.	2.1	29
14	Focus on Protein Unfolding Through Nanopores. BioNanoScience, 2014, 4, 111-118.	3.5	23
15	High Temperature Extends the Range of Size Discrimination of Nonionic Polymers by a Biological Nanopore. Scientific Reports, 2016, 6, 38675.	3.3	23
16	Pore-forming toxins as tools for polymer analytics: From sizing to sequencing. Methods in Enzymology, 2021, 649, 587-634.	1.0	7
17	Polypeptide analysis for nanopore-based protein identification. Nano Research, 2022, 15, 9831-9842.	10.4	5
18	On possible trypsinâ€induced biases in peptides analysis with aerolysin nanopore. Proteomics, 2022, 22, e2100056.	2.2	4

Abdelghani Oukhaled

#	Article	IF	CITATIONS
19	Protein Fingerprinting using the Aerolysin Nanopore. Biophysical Journal, 2020, 118, 475a.	0.5	3
20	Dynamics and Energy Contributions for Transport of Pertactin through an Aerolysin Nanopore. Biophysical Journal, 2015, 108, 481a.	0.5	1
21	Mass-Independent, High-Fidelity Single-Molecule Differentiation using the Aerolysin Protein Pore. Biophysical Journal, 2020, 118, 474a-475a.	0.5	1
22	Aerolysin Block by Single Polyethylenegycol Oligomers: Mass Sensitivity and Voltage Dependence. Biophysical Journal, 2015, 108, 81a.	0.5	0
23	Electrophoresis and Electroosmosis in Aerolysin and Hemolysin Nanopores. Biophysical Journal, 2016, 110, 76a-77a.	0.5	0
24	Interaction of Cucurbituril Molecular Containers with the Aerolysin Nanopore for Molecular Recognition. Biophysical Journal, 2020, 118, 473a-474a.	0.5	0