List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7025397/publications.pdf Version: 2024-02-01

DENC 7HAN

#	Article	IF	CITATIONS
1	Anti-HIV Drug Discovery and Development: Current Innovations and Future Trends. Journal of Medicinal Chemistry, 2016, 59, 2849-2878.	6.4	260
2	Inhibitors of SARS-CoV-2 Entry: Current and Future Opportunities. Journal of Medicinal Chemistry, 2020, 63, 12256-12274.	6.4	183
3	8-Hydroxyquinoline: a privileged structure with a broad-ranging pharmacological potential. MedChemComm, 2015, 6, 61-74.	3.4	169
4	Conformational restriction: an effective tactic in 'follow-on'-based drug discovery. Future Medicinal Chemistry, 2014, 6, 885-901.	2.3	163
5	HIVâ€1 NNRTIs: structural diversity, pharmacophore similarity, and impliations for drug design. Medicinal Research Reviews, 2013, 33, E1-72.	10.5	161
6	Fsp3: A new parameter for drug-likeness. Drug Discovery Today, 2020, 25, 1839-1845.	6.4	156
7	Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries. Drug Discovery Today, 2016, 21, 118-132.	6.4	138
8	The Journey of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) from Lab to Clinic. Journal of Medicinal Chemistry, 2019, 62, 4851-4883.	6.4	124
9	Strategies for the Design of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors: Lessons from the Development of Seven Representative Paradigms. Journal of Medicinal Chemistry, 2012, 55, 3595-3613.	6.4	115
10	Overview of Recent Strategic Advances in Medicinal Chemistry. Journal of Medicinal Chemistry, 2019, 62, 9375-9414.	6.4	108
11	Design, Synthesis, and Evaluation of Thiophene[3,2- <i>d</i>]pyrimidine Derivatives as HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors with Significantly Improved Drug Resistance Profiles. Journal of Medicinal Chemistry, 2016, 59, 7991-8007.	6.4	107
12	Design Strategies of Novel NNRTIs to Overcome Drug Resistance. Current Medicinal Chemistry, 2009, 16, 3903-3917.	2.4	92
13	Recent Advances in DAPYs and Related Analogues as HIV-1 NNRTIs. Current Medicinal Chemistry, 2011, 18, 359-376.	2.4	92
14	Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chemical Society Reviews, 2021, 50, 4514-4540.	38.1	84
15	New techniques and strategies in drug discovery. Chinese Chemical Letters, 2020, 31, 1695-1708.	9.0	82
16	Novel 1,2,3-thiadiazole derivatives as HIV-1 NNRTIs with improved potency: Synthesis and preliminary SAR studies. Bioorganic and Medicinal Chemistry, 2009, 17, 5920-5927.	3.0	81
17	Identification of Highly Selective and Potent Histone Deacetylase 3 Inhibitors Using Click Chemistry-Based Combinatorial Fragment Assembly. PLoS ONE, 2013, 8, e68669.	2.5	79
18	Structure-Based Optimization of Thiophene[3,2- <i>d</i>]pyrimidine Derivatives as Potent HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors with Improved Potency against Resistance-Associated Variants. Journal of Medicinal Chemistry, 2017, 60, 4424-4443.	6.4	79

#	Article	IF	CITATIONS
19	Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 3: Optimization of [1,2,4]triazolo[1,5-a]pyrimidine core via structure-based and physicochemical property-driven approaches. European Journal of Medicinal Chemistry, 2015, 92, 754-765.	5.5	76
20	Fused heterocyclic compounds bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 1: Design, synthesis and biological evaluation of novel 5,7-disubstituted pyrazolo[1,5-a]pyrimidine derivatives. Bioorganic and Medicinal Chemistry, 2014, 22, 2052-2059.	3.0	71
21	Identification of Dihydrofuro[3,4- <i>d</i>]pyrimidine Derivatives as Novel HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors with Promising Antiviral Activities and Desirable Physicochemical Properties. Journal of Medicinal Chemistry, 2019, 62, 1484-1501.	6.4	70
22	Recent developments in the medicinal chemistry of single boron atom-containing compounds. Acta Pharmaceutica Sinica B, 2021, 11, 3035-3059.	12.0	70
23	Targeting the entrance channel of NNIBP: Discovery of diarylnicotinamide 1,4-disubstituted 1,2,3-triazoles as novel HIV-1 NNRTIs with high potency against wild-type and E138K mutant virus. European Journal of Medicinal Chemistry, 2018, 151, 339-350.	5.5	68
24	Exploiting the Tolerant Region I of the Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI) Binding Pocket: Discovery of Potent Diarylpyrimidine-Typed HIV-1 NNRTIs against Wild-Type and E138K Mutant Virus with Significantly Improved Water Solubility and Favorable Safety Profiles. Journal of Medicinal Chemistry, 2019, 62, 2083-2098.	6.4	66
25	Designed Multiple Ligands: An Emerging Anti-HIV Drug Discovery Paradigm. Current Pharmaceutical Design, 2009, 15, 1893-1917.	1.9	65
26	Design, synthesis, anti-HIV evaluation and molecular modeling of piperidine-linked amino-triazine derivatives as potent non-nucleoside reverse transcriptase inhibitors. Bioorganic and Medicinal Chemistry, 2012, 20, 3856-3864.	3.0	63
27	Inhibitors of Influenza Virus Polymerase Acidic (PA) Endonuclease: Contemporary Developments and Perspectives. Journal of Medicinal Chemistry, 2017, 60, 3533-3551.	6.4	60
28	"Old Friends in New Guiseâ€: Exploiting Privileged Structures for Scaffold Re-Evolution/Refining. Combinatorial Chemistry and High Throughput Screening, 2014, 17, 536-553.	1.1	58
29	Structural basis for potent and broad inhibition of HIV-1 RT by thiophene[3,2-d]pyrimidine non-nucleoside inhibitors. ELife, 2018, 7, .	6.0	57
30	Design, synthesis and biological evaluation of tacrine-1,2,3-triazole derivatives as potent cholinesterase inhibitors. MedChemComm, 2018, 9, 149-159.	3.4	55
31	Recent Advances in the Discovery and Development of Novel HIV-1 NNRTI Platforms: 2006-2008 Update. Current Medicinal Chemistry, 2009, 16, 2876-2889.	2.4	51
32	Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 2: Discovery of novel [1,2,4]Triazolo[1,5-a]pyrimidines using a structure-guided core-refining approach. European Journal of Medicinal Chemistry, 2014, 85, 293-303.	5.5	51
33	Discovery of phenylalanine derivatives as potent HIV-1 capsid inhibitors from click chemistry-based compound library. European Journal of Medicinal Chemistry, 2018, 158, 478-492.	5.5	51
34	Structure-Based Bioisosterism Yields HIV-1 NNRTIs with Improved Drug-Resistance Profiles and Favorable Pharmacokinetic Properties. Journal of Medicinal Chemistry, 2020, 63, 4837-4848.	6.4	50
35	Strategies for the Discovery of Target-Specific or Isoform-Selective Modulators. Journal of Medicinal Chemistry, 2015, 58, 7611-7633.	6.4	49
36	Novel HIV-1 non-nucleoside reverse transcriptase inhibitors: a patent review (2005 – 2010). Expert Opinion on Therapeutic Patents, 2011, 21, 717-796.	5.0	46

#	Article	IF	CITATIONS
37	Optimization of N-Substituted Oseltamivir Derivatives as Potent Inhibitors of Group-1 and -2 Influenza A Neuraminidases, Including a Drug-Resistant Variant. Journal of Medicinal Chemistry, 2018, 61, 6379-6397.	6.4	46
38	Novel HIV-1 non-nucleoside reverse transcriptase inhibitors: a patent review (2011 – 2014). Expert Opinion on Therapeutic Patents, 2014, 24, 1199-1227.	5.0	45
39	Recent Advances in the Discovery and Development of Novel HIV-1 NNRTI Platforms (Part II): 2009-2013 Update#. Current Medicinal Chemistry, 2013, 21, 329-355.	2.4	45
40	Discovery of novel 1,4-disubstituted 1,2,3-triazole phenylalanine derivatives as HIV-1 capsid inhibitors. RSC Advances, 2019, 9, 28961-28986.	3.6	42
41	Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 4: Design, synthesis and biological evaluation of novel imidazo[1,2-a]pyrazines. European Journal of Medicinal Chemistry, 2015, 93, 330-337.	5.5	41
42	Update on Recent Developments in Small Molecular HIV-1 RNase H Inhibitors (2013-2016): Opportunities and Challenges. Current Medicinal Chemistry, 2018, 25, 1682-1702.	2.4	41
43	Heterocycle-thioacetic Acid Motif: A Privileged Molecular Scaffold with Potent, Broad-Ranging Pharmacological Activities. Current Pharmaceutical Design, 2013, 19, 7141-7154.	1.9	40
44	Discovery of novel anti-HIV agents via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry-based approach. Expert Opinion on Drug Discovery, 2016, 11, 857-871.	5.0	39
45	Novel urate transporter 1 (URAT1) inhibitors: a review of recent patent literature (2016–2019). Expert Opinion on Therapeutic Patents, 2019, 29, 871-879.	5.0	39
46	Targeting the hydrophobic channel of NNIBP: discovery of novel 1,2,3-triazole-derived diarylpyrimidines as novel HIV-1 NNRTIs with high potency against wild-type and K103N mutant virus. Organic and Biomolecular Chemistry, 2019, 17, 3202-3217.	2.8	39
47	Exploring the hydrophobic channel of NNIBP leads to the discovery of novel piperidine-substituted thiophene[3,2-d]pyrimidine derivatives as potent HIV-1 NNRTIs. Acta Pharmaceutica Sinica B, 2020, 10, 878-894.	12.0	39
48	Identification of novel SIRT2-selective inhibitors using a click chemistry approach. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1871-1874.	2.2	38
49	Downregulation of Ca ²⁺ -Activated Cl ^{â^'} Channel TMEM16A by the Inhibition of Histone Deacetylase in TMEM16A-Expressing Cancer Cells. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 510-518.	2.5	37
50	Discovery and Characterization of Fluorine-Substituted Diarylpyrimidine Derivatives as Novel HIV-1 NNRTIs with Highly Improved Resistance Profiles and Low Activity for the hERG Ion Channel. Journal of Medicinal Chemistry, 2020, 63, 1298-1312.	6.4	37
51	Design, synthesis and anti-HIV evaluation of novel diarylnicotinamide derivatives (DANAs) targeting the entrance channel of the NNRTI binding pocket through structure-guided molecular hybridization. European Journal of Medicinal Chemistry, 2014, 87, 52-62.	5.5	36
52	Current insights into anti-HIV drug discovery and development: a review of recent patent literature (2014–2017). Expert Opinion on Therapeutic Patents, 2018, 28, 299-316.	5.0	36
53	Discovery and characterization of novel imidazopyridine derivative CHEQ-2 as a potent CDC25 inhibitor and promising anticancer drug candidate. European Journal of Medicinal Chemistry, 2014, 82, 293-307.	5.5	35
54	Structure-Based Optimization of N-Substituted Oseltamivir Derivatives as Potent Anti-Influenza A Virus Agents with Significantly Improved Potency against Oseltamivir-Resistant N1-H274Y Variant. Journal of Medicinal Chemistry, 2018, 61, 9976-9999.	6.4	35

#	Article	IF	CITATIONS
55	Contemporary medicinal-chemistry strategies for the discovery of selective butyrylcholinesterase inhibitors. Drug Discovery Today, 2019, 24, 629-635.	6.4	35
56	Recent Progress in the Research of Small Molecule HIV-1 RNase H Inhibitors. Current Medicinal Chemistry, 2014, 21, 1956-1967.	2.4	35
57	Privileged scaffolds or promiscuous binders: a glance of pyrrolo[2,1-f][1,2,4]triazines and related bridgehead nitrogen heterocycles in medicinal chemistry. Current Pharmaceutical Design, 2013, 19, 1528-48.	1.9	34
58	2,4,5-Trisubstituted Pyrimidines as Potent HIV-1 NNRTIs: Rational Design, Synthesis, Activity Evaluation, and Crystallographic Studies. Journal of Medicinal Chemistry, 2021, 64, 4239-4256.	6.4	33
59	Medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors. Acta Pharmaceutica Sinica B, 2022, 12, 581-599.	12.0	33
60	Contemporary Medicinal Chemistry Strategies for the Discovery and Development of Novel HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 3729-3757.	6.4	33
61	Discovery of Novel Diarylpyrimidine Derivatives as Potent HIV-1 NNRTIs Targeting the "NNRTI Adjacent― Binding Site. ACS Medicinal Chemistry Letters, 2018, 9, 334-338.	2.8	32
62	Privileged Scaffolds or Promiscuous Binders: A Glance of Pyrrolo[2,1-f][1,2,4]triazines and Related Bridgehead Nitrogen Heterocycles in Medicinal Chemistry. Current Pharmaceutical Design, 2013, 19, 1528-1548.	1.9	32
63	5-Hydroxypyrido[2,3-b]pyrazin-6(5H)-one derivatives as novel dual inhibitors of HIV-1 reverse transcriptase-associated ribonuclease H and integrase. European Journal of Medicinal Chemistry, 2018, 155, 714-724.	5.5	31
64	Identification of SNAIL1 Peptide-Based Irreversible Lysine-Specific Demethylase 1-Selective Inactivators. Journal of Medicinal Chemistry, 2016, 59, 1531-1544.	6.4	30
65	Discovery of uracil-bearing DAPYs derivatives as novel HIV-1 NNRTIs via crystallographic overlay-based molecular hybridization. European Journal of Medicinal Chemistry, 2017, 130, 209-222.	5.5	30
66	Discovery of Thiophene[3,2- <i>d</i>]pyrimidine Derivatives as Potent HIV-1 NNRTIs Targeting the Tolerant Region I of NNIBP. ACS Medicinal Chemistry Letters, 2017, 8, 1188-1193.	2.8	30
67	Novel Human Urate Transporter 1 Inhibitors as Hypouricemic Drug Candidates with Favorable Druggability. Journal of Medicinal Chemistry, 2020, 63, 10829-10854.	6.4	30
68	Design, synthesis and anti-HIV evaluation of novel diarylpyridine derivatives targeting the entrance channel of NNRTI binding pocket. European Journal of Medicinal Chemistry, 2016, 109, 294-304.	5.5	28
69	Further Exploring Solvent-Exposed Tolerant Regions of Allosteric Binding Pocket for Novel HIV-1 NNRTIs Discovery. ACS Medicinal Chemistry Letters, 2018, 9, 370-375.	2.8	28
70	Molecular design opportunities presented by solventâ€exposed regions of target proteins. Medicinal Research Reviews, 2019, 39, 2194-2238.	10.5	28
71	Structural optimization of pyridine-type DAPY derivatives to exploit the tolerant regions of the NNRTI binding pocket. European Journal of Medicinal Chemistry, 2016, 121, 352-363.	5.5	27
72	Discovery of C-1 modified oseltamivir derivatives as potent influenza neuraminidase inhibitors. European Journal of Medicinal Chemistry, 2018, 146, 220-231.	5.5	26

#	Article	IF	CITATIONS
73	Discovery of novel diarylpyrimidines as potent HIV-1 NNRTIs by investigating the chemical space of a less explored "hydrophobic channel― Organic and Biomolecular Chemistry, 2018, 16, 1014-1028.	2.8	26
74	Identification of highly potent and selective Cdc25 protein phosphatases inhibitors from miniaturization click-chemistry-based combinatorial libraries. European Journal of Medicinal Chemistry, 2019, 183, 111696.	5.5	26
75	Discovery and optimization of benzenesulfonamides-based hepatitis B virus capsid modulators via contemporary medicinal chemistry strategies. European Journal of Medicinal Chemistry, 2020, 206, 112714.	5.5	26
76	"Old Dogs with New Tricksâ€: exploiting alternative mechanisms of action and new drug design strategies for clinically validated HIV targets. Molecular BioSystems, 2014, 10, 1998.	2.9	25
77	Discovery of small molecular inhibitors targeting HIV-1 gp120–CD4 interaction drived from BMS-378806. European Journal of Medicinal Chemistry, 2014, 86, 481-490.	5.5	25
78	Discovery of piperidine-substituted thiazolo[5,4-d]pyrimidine derivatives as potent and orally bioavailable HIV-1 non-nucleoside reverse transcriptase inhibitors. Communications Chemistry, 2019, 2,	4.5	24
79	Design, synthesis and biological evaluation of "Multi-Site―binding influenza virus neuraminidase inhibitors. European Journal of Medicinal Chemistry, 2019, 178, 64-80.	5.5	24
80	Design, synthesis and biological evaluation of novel acetamide-substituted doravirine and its prodrugs as potent HIV-1 NNRTIS. Bioorganic and Medicinal Chemistry, 2019, 27, 447-456.	3.0	24
81	Discovery of novel DAPY-IAS hybrid derivatives as potential HIV-1 inhibitors using molecular hybridization based on crystallographic overlays. Bioorganic and Medicinal Chemistry, 2017, 25, 4397-4406.	3.0	23
82	In situ click chemistry-based rapid discovery of novel HIV-1 NNRTIs by exploiting the hydrophobic channel and tolerant regions of NNIBP. European Journal of Medicinal Chemistry, 2020, 193, 112237.	5.5	23
83	Punicalagin is a neuraminidase inhibitor of influenza viruses. Journal of Medical Virology, 2021, 93, 3465-3472.	5.0	23
84	Novel fused pyrimidine and isoquinoline derivatives as potent HIV-1 NNRTIs: a patent evaluation of WO2016105532A1, WO2016105534A1 and WO2016105564A1. Expert Opinion on Therapeutic Patents, 2017 383-391.	, 257,0	22
85	Efficient drug discovery by rational lead hybridization based on crystallographic overlay. Drug Discovery Today, 2019, 24, 805-813.	6.4	22
86	Medicinal Chemistry Insights into Novel HDAC Inhibitors: An Updated Patent Review (2012-2016). Recent Patents on Anti-Cancer Drug Discovery, 2017, 12, 16-34.	1.6	22
87	Drug repurposing: An effective strategy to accelerate contemporary drug discovery. Drug Discovery Today, 2022, 27, 1785-1788.	6.4	22
88	Multivalent Agents: A Novel Concept and Preliminary Practice in Anti-HIV Drug Discovery. Current Medicinal Chemistry, 2013, 20, 815-832.	2.4	21
89	Design, synthesis and preliminary SAR studies of novel N-arylmethyl substituted piperidine-linked aniline derivatives as potent HIV-1 NNRTIs. Bioorganic and Medicinal Chemistry, 2014, 22, 633-642.	3.0	21
90	Design, synthesis and evaluation of novel HIV-1 NNRTIs with dual structural conformations targeting the entrance channel of the NNRTI binding pocket. European Journal of Medicinal Chemistry, 2016, 115, 53-62.	5.5	21

#	Article	IF	CITATIONS
91	Novel diarylpyrimidines and diaryltriazines as potent HIV-1 NNRTIs with dramatically improved solubility: a patent evaluation of US20140378443A1. Expert Opinion on Therapeutic Patents, 2016, 26, 281-289.	5.0	21
92	Discovery of novel 1,2,3-triazole oseltamivir derivatives as potent influenza neuraminidase inhibitors targeting the 430-cavity. European Journal of Medicinal Chemistry, 2020, 187, 111940.	5.5	21
93	Recent advances in the structure-based rational design of TNKSIs. Molecular BioSystems, 2014, 10, 2783-2799.	2.9	20
94	Recent Advances in the Research of HIV-1 RNase H Inhibitors. Mini-Reviews in Medicinal Chemistry, 2008, 8, 1243-1251.	2.4	19
95	The Development of HEPT-Type HIV Non-Nucleoside Reverse Transcriptase Inhibitors and Its Implications for DABO Family. Current Pharmaceutical Design, 2012, 18, 4165-4186.	1.9	18
96	Design, Synthesis, and Antiâ€ <scp>HIV</scp> Evaluation of Novel Triazine Derivatives Targeting the Entrance Channel of the <scp>NNRTI</scp> Binding Pocket. Chemical Biology and Drug Design, 2015, 86, 122-128.	3.2	18
97	Arylazolyl(azinyl)thioacetanilides. Part 10: Design, synthesis and biological evaluation of novel substituted imidazopyridinylthioacetanilides as potent HIV-1 inhibitors. Bioorganic and Medicinal Chemistry, 2012, 20, 5527-5536.	3.0	17
98	Synthesis and Preliminary Antiviral Activities of Piperidineâ€ s ubstituted Purines against <scp>HIV</scp> and Influenza A/H1N1 Infections. Chemical Biology and Drug Design, 2015, 86, 568-577.	3.2	17
99	Discovery of novel piperidine-substituted indolylarylsulfones as potent HIV NNRTIs via structure-guided scaffold morphing and fragment rearrangement. European Journal of Medicinal Chemistry, 2017, 126, 190-201.	5.5	17
100	Targeting the entry step of SARS-CoV-2: a promising therapeutic approach. Signal Transduction and Targeted Therapy, 2020, 5, 98.	17.1	17
101	1-Hydroxypyrido[2,3-d]pyrimidin-2(1H)-ones as novel selective HIV integrase inhibitors obtained via privileged substructure-based compound libraries. Bioorganic and Medicinal Chemistry, 2017, 25, 5779-5789.	3.0	16
102	Design, synthesis, and antiviral evaluation of novel hydrazone-substituted thiophene[3,2-d]pyrimidine derivatives as potent human immunodeficiency virus-1 inhibitors. Chemical Biology and Drug Design, 2018, 92, 2009-2021.	3.2	16
103	Discovery of novel indolylarylsulfones as potent HIV-1 NNRTIs via structure-guided scaffold morphing. European Journal of Medicinal Chemistry, 2019, 182, 111619.	5.5	16
104	Medicinal chemistry insights into novel CDC25 inhibitors. European Journal of Medicinal Chemistry, 2020, 201, 112374.	5.5	16
105	Design, synthesis, and biological evaluation of piperidinylâ€substituted [1,2,4]triazolo[1,5â€a]pyrimidine derivatives as potential antiâ€HIVâ€1 agents with reduced cytotoxicity. Chemical Biology and Drug Design, 2021, 97, 67-76.	3.2	16
106	Boronic acid-containing diarylpyrimidine derivatives as novel HIV-1 NNRTIs: Design, synthesis and biological evaluation. Chinese Chemical Letters, 2021, 32, 4053-4057.	9.0	16
107	Design, synthesis, and evaluation of "dual-site―binding diarylpyrimidines targeting both NNIBP and the NNRTI adjacent site of the HIV-1 reverse transcriptase. European Journal of Medicinal Chemistry, 2021, 211, 113063.	5.5	15
108	Exploiting the tolerant region I of the non-nucleoside reverse transcriptase inhibitor (NNRTI) binding pocket. Part 2: Discovery of diarylpyrimidine derivatives as potent HIV-1 NNRTIs with high Fsp3 values and favorable drug-like properties. European Journal of Medicinal Chemistry, 2021, 213, 113051.	5.5	15

#	Article	IF	CITATIONS
109	Newly Emerging Strategies in Antiviral Drug Discovery: Dedicated to Prof. Dr. Erik De Clercq on Occasion of His 80th Anniversary. Molecules, 2022, 27, 850.	3.8	15
110	Design, synthesis, and biologic evaluation of novel galloyl derivatives as <scp>HIV</scp> â€1 <scp>RN</scp> ase H inhibitors. Chemical Biology and Drug Design, 2019, 93, 582-589.	3.2	14
111	Discovery of Novel Dihydrothiopyrano[4,3- <i>d</i>]pyrimidine Derivatives as Potent HIV-1 NNRTIs with Significantly Reduced hERG Inhibitory Activity and Improved Resistance Profiles. Journal of Medicinal Chemistry, 2021, 64, 13658-13675.	6.4	14
112	First discovery of a potential carbonate prodrug of NNRTI drug candidate RDEA427 with submicromolar inhibitory activity against HIV-1 K103N/Y181C double mutant strain. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1348-1351.	2.2	13
113	Discovery of potent <scp>HIV</scp> â€l nonâ€nucleoside reverse transcriptase inhibitors by exploring the structure–activity relationship of solventâ€exposed regions I. Chemical Biology and Drug Design, 2019, 93, 430-437.	3.2	13
114	Discovery of highly potent and selective influenza virus neuraminidase inhibitors targeting 150-cavity. European Journal of Medicinal Chemistry, 2021, 212, 113097.	5.5	13
115	Contemporary medicinal chemistry strategies for the discovery and optimization of influenza inhibitors targeting vRNP constituent proteins. Acta Pharmaceutica Sinica B, 2022, 12, 1805-1824.	12.0	13
116	Arylazolyl(azinyl)thioacetanilides. Part 20: Discovery of novel purinylthioacetanilides derivatives as potent HIV-1 NNRTIs via a structure-based bioisosterism approach. Bioorganic and Medicinal Chemistry, 2016, 24, 4424-4433.	3.0	12
117	Design, synthesis and biological evaluation of 3-hydroxyquinazoline-2,4(1H,3H)-diones as dual inhibitors of HIV-1 reverse transcriptase-associated RNase H and integrase. Bioorganic and Medicinal Chemistry, 2019, 27, 3836-3845.	3.0	12
118	Structure–Activity Relationship Exploration of NNIBP Tolerant Region I Leads to Potent HIV-1 NNRTIs. ACS Infectious Diseases, 2020, 6, 2225-2234.	3.8	12
119	Discovery of potent and selective Cdc25 phosphatase inhibitors via rapid assembly and in situ screening of Quinonoid-focused libraries. Bioorganic Chemistry, 2021, 115, 105254.	4.1	12
120	Identification of C5-NH ₂ Modified Oseltamivir Derivatives as Novel Influenza Neuraminidase Inhibitors with Highly Improved Antiviral Activities and Favorable Druggability. Journal of Medicinal Chemistry, 2021, 64, 17992-18009.	6.4	12
121	Discovery of Novel Bicyclic Imidazolopyridine-Containing Human Urate Transporter 1 Inhibitors as Hypouricemic Drug Candidates with Improved Efficacy and Favorable Druggability. Journal of Medicinal Chemistry, 2022, 65, 4218-4237.	6.4	12
122	Arylazolyl(azinyl)thioacetanilides. Part 16: Structure-based bioisosterism design, synthesis and biological evaluation of novel pyrimidinylthioacetanilides as potent HIV-1 inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 5290-5297.	3.0	11
123	The development of an effective synthetic route of lesinurad (RDEA594). Chemistry Central Journal, 2017, 11, 86.	2.6	11
124	Resurrecting the Condemned: Identification of <i>N</i> -Benzoxaborole Benzofuran GSK8175 as a Clinical Candidate with Reduced Metabolic Liability. Journal of Medicinal Chemistry, 2019, 62, 3251-3253.	6.4	11
125	Contemporary medicinal-chemistry strategies for discovery of blood coagulation factor Xa inhibitors. Expert Opinion on Drug Discovery, 2019, 14, 915-931.	5.0	10
126	Designing influenza polymerase acidic endonuclease inhibitors via â€~privileged scaffold' re-evolution/refining strategy. Future Medicinal Chemistry, 2019, 11, 265-268.	2.3	10

#	Article	IF	CITATIONS
127	Targeting dual tolerant regions of binding pocket: Discovery of novel morpholine-substituted diarylpyrimidines as potent HIV-1 NNRTIs with significantly improved water solubility. European Journal of Medicinal Chemistry, 2020, 206, 112811.	5.5	10
128	Structure-Based Design and Discovery of Pyridyl-Bearing Fused Bicyclic HIV-1 Inhibitors: Synthesis, Biological Characterization, and Molecular Modeling Studies. Journal of Medicinal Chemistry, 2021, 64, 13604-13621.	6.4	10
129	Development of Novel Dihydrofuro[3,4- <i>d</i>]pyrimidine Derivatives as HIV-1 NNRTIs to Overcome the Highly Resistant Mutant Strains F227L/V106A and K103N/Y181C. Journal of Medicinal Chemistry, 2022, 65, 2458-2470.	6.4	10
130	Fragment-based approaches to anti-HIV drug discovery: state of the art and future opportunities. Expert Opinion on Drug Discovery, 2015, 10, 1271-1281.	5.0	9
131	Novel diaryltriazines with a picolinonitrile moiety as potent HIV-1 RT inhibitors: a patent evaluation of WO2016059647(A2). Expert Opinion on Therapeutic Patents, 2017, 27, 9-15.	5.0	9
132	Discovery, optimization, and target identification of novel coumarin derivatives as HIV-1 reverse transcriptase-associated ribonuclease H inhibitors. European Journal of Medicinal Chemistry, 2021, 225, 113769.	5.5	9
133	Novel RNase H Inhibitors Blocking RNA-directed Strand Displacement DNA Synthesis by HIV-1 Reverse Transcriptase. Journal of Molecular Biology, 2022, 434, 167507.	4.2	9
134	Novel fluorine-containing DAPY derivatives as potent HIV-1 NNRTIs: a patent evaluation of WO2014072419. Expert Opinion on Therapeutic Patents, 2015, 25, 1477-1486.	5.0	8
135	Repurposing of HDAC inhibitors toward anti-hepatitis C virus drug discovery: teaching an old dog new tricks. Future Medicinal Chemistry, 2015, 7, 1367-1371.	2.3	8
136	Indolylarylsulfones bearing phenylboronic acid and phenylboronate ester functionalities as potent HIV‑1 non-nucleoside reverse transcriptase inhibitors. Bioorganic and Medicinal Chemistry, 2022, 53, 116531.	3.0	8
137	Identification of spirocyclic or phosphate substituted quinolizine derivatives as novel HIV-1 integrase inhibitors: a patent evaluation of WO2016094197A1, WO2016094198A1 and WO2016154527A1. Expert Opinion on Therapeutic Patents, 2017, 27, 1277-1286.	5.0	7
138	Discovery of novel "Dual-site―binding oseltamivir derivatives as potent influenza virus neuraminidase inhibitors. European Journal of Medicinal Chemistry, 2020, 191, 112147.	5.5	7
139	Design, Synthesis, and Biological Evaluation of Novel 4â€Aminopiperidinylâ€linked 3,5â€Disubstitutedâ€1,2,6â€thiadiazineâ€1,1â€dione Derivatives as <scp>HIV</scp> â€1 <scp>NNRTI</scp> s. Cl Biology and Drug Design, 2015, 86, 107-113.	nesnacal	6
140	Identification of novel potent HIV-1 inhibitors by exploiting the tolerant regions of the NNRTIs binding pocket. European Journal of Medicinal Chemistry, 2021, 214, 113204.	5.5	6
141	Chemical space exploration around indolylarylsulfone scaffold led to a novel class of highly active HIV-1 NNRTIs with spiro structural features. European Journal of Medicinal Chemistry, 2022, 238, 114471.	5.5	6
142	Development of a practical synthesis of etravirine via a microwave-promoted amination. Chemistry Central Journal, 2018, 12, 144.	2.6	5
143	The development of an effective synthetic route of rilpivirine. BMC Chemistry, 2021, 15, 22.	3.8	5
144	SARS-CoV-2 Entry Inhibitors Targeting Virus-ACE2 or Virus-TMPRSS2 Interactions. Current Medicinal Chemistry, 2022, 29, 682-699.	2.4	5

#	Article	IF	CITATIONS
145	Design, synthesis and anti-HIV evaluation of novel 5-substituted diarylpyrimidine derivatives as potent HIV-1 NNRTIs. Bioorganic and Medicinal Chemistry, 2021, 40, 116195.	3.0	5
146	Design, synthesis, and antiviral evaluation of novel piperidine-substituted arylpyrimidines as HIV-1 NNRTIs by exploring the hydrophobic channel of NNIBP. Bioorganic Chemistry, 2021, 116, 105353.	4.1	5
147	Privileged Scaffolds or Promiscuous Binders: A Glance of Pyrrolo[2,1-f][1,2,4]triazines and Related Bridgehead Nitrogen Heterocycles in Medicinal Chemistry. Current Pharmaceutical Design, 2013, 19, 1528-1548.	1.9	4
148	Design, synthesis, and antiviral activity of phenylalanine derivatives as HIV-1 capsid inhibitors. Bioorganic and Medicinal Chemistry, 2021, 48, 116414.	3.0	4
149	Design, synthesis, and biological evaluation of novel double-winged galloyl derivatives as HIV-1 RNase H inhibitors. European Journal of Medicinal Chemistry, 2022, 240, 114563.	5.5	4
150	An improved synthesis approach of the HIV-1 inhibitor RDEA427, a pyrrolo[2,3-d]pyrimidine derivative. Arkivoc, 2017, 2016, 45-51.	0.5	3
151	Discovery of potential dual-target prodrugs of HIV-1 reverse transcriptase and nucleocapsid protein 7. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127287.	2.2	3
152	Exploiting the hydrophobic channel of the NNIBP: Discovery of novel diarylpyrimidines as HIV-1 NNRTIs against wild-type and K103N mutant viruses. Bioorganic and Medicinal Chemistry, 2021, 42, 116239.	3.0	3
153	The increasing impact of Chinese innovative drug research on the global stage with a focus on drug discovery. Expert Opinion on Drug Discovery, 2020, 15, 1115-1120.	5.0	2
154	HIV-1 and HBV RNase H as Metal-Chelating Inhibitors: Discovery and Medicinal Chemistry Strategies. , 2021, , 585-602.		0
155	Discovery of Bioactive Molecules via Miniaturized Parallel Modular Reactions and Rapid Screening (2016-2021 update). Mini-Reviews in Organic Chemistry, 2021, 18, .	1.3	Ο