Huihao Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7025351/publications.pdf

Version: 2024-02-01

567281 330143 1,639 63 15 37 citations h-index g-index papers 65 65 65 2547 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Rubidium Chloride Increases Life Span Through an AMPK/FOXO-Dependent Pathway in <i>Caenorhabditis elegans</i> Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 1517-1524.	3.6	5
2	Discovery of novel diphenylbutene derivative ferroptosis inhibitors as neuroprotective agents. European Journal of Medicinal Chemistry, 2022, 231, 114151.	5 . 5	16
3	Diverse Sesquiterpenoids and Polyacetylenes from <i>Atractylodes lancea</i> and Their Anti-Osteoclastogenesis Activity. Journal of Natural Products, 2022, 85, 866-877.	3.0	10
4	Design, Synthesis, and Proof-of-Concept of Triple-Site Inhibitors against Aminoacyl-tRNA Synthetases. Journal of Medicinal Chemistry, 2022, 65, 5800-5820.	6.4	9
5	Fragment screening and structural analyses highlight the ATP-assisted ligand binding for inhibitor discovery against type 1 methionyl-tRNA synthetase. Nucleic Acids Research, 2022, 50, 4755-4768.	14.5	9
6	6-acrylic phenethyl ester-2-pyranone derivative induces apoptosis and G2/M arrest by targeting GRP94 in colorectal cancer. Bioorganic Chemistry, 2022, 123, 105802.	4.1	5
7	Saucerneol attenuates nasopharyngeal carcinoma cells proliferation and metastasis through selectively targeting Grp94. Phytomedicine, 2022, 101, 154133.	5.3	1
8	Ferroptosis Inhibitory Aromatic Abietane Diterpenoids from <i>Ajuga decumbens</i> and Structural Revision of Two 3,4-Epoxy Group-Containing Abietanes. Journal of Natural Products, 2022, 85, 1808-1815.	3.0	9
9	Diverse diterpenoids and sesquiterpenoids from Siegesbeckia pubescens and their activity against RANKL-induced osteoclastogenesis. Bioorganic Chemistry, 2021, 107, 104537.	4.1	8
10	Discovering High Potent Hsp90 Inhibitors as Antinasopharyngeal Carcinoma Agents through Fragment Assembling Approach. Journal of Medicinal Chemistry, 2021, 64, 2010-2023.	6.4	10
11	Inhibitory mechanism of reveromycin A at the tRNA binding site of a class I synthetase. Nature Communications, 2021, 12, 1616.	12.8	13
12	Synthesis and evaluation of andrographolide derivatives as potent anti-osteoporosis agents inÂvitro and inÂvivo. European Journal of Medicinal Chemistry, 2021, 213, 113185.	5 . 5	7
13	CMT2N-causing aminoacylation domain mutants enable Nrp1 interaction with AlaRS. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	16
14	Structural insights into the ligand recognition and catalysis of the key aminobutanoyltransferase CntL in staphylopine biosynthesis. FASEB Journal, 2021, 35, e21575.	0.5	4
15	Inhibiting Ferroptosis through Disrupting the NCOA4–FTH1 Interaction: A New Mechanism of Action. ACS Central Science, 2021, 7, 980-989.	11.3	163
16	X-shaped structure of bacterial heterotetrameric tRNA synthetase suggests cryptic prokaryote functions and a rationale for synthetase classifications. Nucleic Acids Research, 2021, 49, 10106-10119.	14.5	12
17	Discovery of phloroglucinols from Hypericum japonicum as ferroptosis inhibitors. Fìtoterapìâ, 2021, 153, 104984.	2.2	16
18	Identification of new building blocks by fragment screening for discovering GyrB inhibitors. Bioorganic Chemistry, 2021, 114, 105040.	4.1	5

#	Article	IF	Citations
19	A new ferroptosis inhibitor, isolated from Ajuga nipponensis, protects neuronal cells via activating NRF2-antioxidant response elements (AREs) pathway. Bioorganic Chemistry, 2021, 115, 105177.	4.1	12
20	Discovery of novel tRNA-amino acid dual-site inhibitors against threonyl-tRNA synthetase by fragment-based target hopping. European Journal of Medicinal Chemistry, 2020, 187, 111941.	5.5	15
21	Discovery of ingenane and jatrophane diterpenoids from Euphorbia esula as inhibitors of RANKL-induced osteoclastogenesis. Fìtoterapìâ, 2020, 146, 104718.	2.2	4
22	Discovery of novel liver X receptor inverse agonists as lipogenesis inhibitors. European Journal of Medicinal Chemistry, 2020, 206, 112793.	5.5	19
23	Structure-guided optimization and mechanistic study of a class of quinazolinone-threonine hybrids as antibacterial ThrRS inhibitors. European Journal of Medicinal Chemistry, 2020, 207, 112848.	5.5	10
24	Structural and Biochemical Characterization of SbnC as a Representative Type B Siderophore Synthetase. ACS Chemical Biology, 2020, 15, 2731-2740.	3.4	4
25	Discovery of new LXR \hat{I}^2 agonists as glioblastoma inhibitors. European Journal of Medicinal Chemistry, 2020, 194, 112240.	5.5	14
26	OSBP-Related Protein 5L Maintains Intracellular IP3/Ca2+ Signaling and Proliferation in T Cells by Facilitating PIP2 Hydrolysis. Journal of Immunology, 2020, 204, 1134-1145.	0.8	5
27	Identification of a Novel Inhibitor of Catabolite Control Protein A from <i>Staphylococcus aureus</i> . ACS Infectious Diseases, 2020, 6, 347-354.	3.8	10
28	Jatrophane Diterpenoids from <i>Euphorbia esula</i> as Inhibitors of RANKL-Induced Osteoclastogenesis. Journal of Natural Products, 2020, 83, 1005-1017.	3.0	12
29	Discovery of tissue selective liver X receptor agonists for the treatment of atherosclerosis without causing hepatic lipogenesis. European Journal of Medicinal Chemistry, 2019, 182, 111647.	5.5	4
30	Structural Insights into Substrate Recognition and Activity Regulation of the Key Decarboxylase SbnH in Staphyloferrin B Biosynthesis. Journal of Molecular Biology, 2019, 431, 4868-4881.	4.2	7
31	LSA: a local-weighted structural alignment tool for pharmaceutical virtual screening. RSC Advances, 2019, 9, 3912-3917.	3.6	2
32	Synthesis and evaluation of tetrahydroisoquinoline-benzimidazole hybrids as multifunctional agents for the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 2019, 167, 133-145.	5.5	46
33	Structurally Selective Mechanism of Liver X Receptor Ligand: <i>In Silico</i> and <i>In Vitro</i> Studies. Journal of Chemical Information and Modeling, 2019, 59, 3277-3290.	5.4	3
34	Identify liver X receptor \hat{l}^2 modulator building blocks by developing a fluorescence polarization-based competition assay. European Journal of Medicinal Chemistry, 2019, 178, 458-467.	5.5	11
35	Systematic Studies on the Protocol and Criteria for Selecting a Covalent Docking Tool. Molecules, 2019, 24, 2183.	3.8	20
36	Crystal structure of CntK, the cofactor-independent histidine racemase in staphylopine-mediated metal acquisition of Staphylococcus aureus. International Journal of Biological Macromolecules, 2019, 135, 725-733.	7.5	11

#	Article	IF	CITATIONS
37	DeepChemStable: Chemical Stability Prediction with an Attention-Based Graph Convolution Network. Journal of Chemical Information and Modeling, 2019, 59, 1044-1049.	5.4	58
38	TCMAnalyzer: A Chemo- and Bioinformatics Web Service for Analyzing Traditional Chinese Medicine. Journal of Chemical Information and Modeling, 2018, 58, 550-555.	5.4	23
39	Design, synthesis, and biological evaluation of compounds with a new scaffold as anti-neuroinflammatory agents for the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 2018, 149, 129-138.	5.5	30
40	An alternative conformation of human TrpRS suggests a role of zinc in activating non-enzymatic function. RNA Biology, 2018, 15, 649-658.	3.1	12
41	Design, syntheses and lipid accumulation inhibitory activities of novel resveratrol mimics. European Journal of Medicinal Chemistry, 2018, 143, 114-122.	5.5	13
42	Identification of an auxiliary druggable pocket in the DNA gyrase ATPase domain using fragment probes. MedChemComm, 2018, 9, 1619-1629.	3.4	16
43	cBinderDB: a covalent binding agent database. Bioinformatics, 2017, 33, 1258-1260.	4.1	16
44	Membrane binding of the insertion sequence of Proteus vulgaris L-amino acid deaminase stabilizes protein structure and increases catalytic activity. Scientific Reports, 2017, 7, 13719.	3.3	5
45	Double mimicry evades tRNA synthetase editing by toxic vegetable-sourced non-proteinogenic amino acid. Nature Communications, 2017, 8, 2281.	12.8	41
46	PTS: a pharmaceutical target seeker. Database: the Journal of Biological Databases and Curation, 2017, 2017, .	3.0	4
47	ASDB: a resource for probing protein functions with small molecules. Bioinformatics, 2016, 32, 1752-1754.	4.1	8
48	Evolutionary Gain of Alanine Mischarging to Noncognate tRNAs with a G4:U69 Base Pair. Journal of the American Chemical Society, 2016, 138, 12948-12955.	13.7	35
49	Crystal structure of a membrane-bound l-amino acid deaminase from Proteus vulgaris. Journal of Structural Biology, 2016, 195, 306-315.	2.8	30
50	The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs. Science Translational Medicine, 2015, 7, 288ra77.	12.4	82
51	Identifying farnesoid X receptor agonists by na \tilde{A} -ve Bayesian and recursive partitioning approaches. MedChemComm, 2015, 6, 1393-1403.	3.4	5
52	Structural and biochemical insights into the DNA-binding mode of Mj Spt4p:Spt5 complex at the exit tunnel of RNAPII. Journal of Structural Biology, 2015, 192, 418-425.	2.8	11
53	Discovering new DNA gyrase inhibitors using machine learning approaches. RSC Advances, 2015, 5, 105600-105608.	3.6	11
54	CMT2D neuropathy is linked to the neomorphic binding activity of glycyl-tRNA synthetase. Nature, 2015, 526, 710-714.	27.8	137

#	Article	IF	CITATION
55	Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science, 2014, 345, 455-459.	12.6	378
56	ATP-directed capture of bioactive herbal-based medicine on human tRNA synthetase. Nature, 2013, 494, 121-124.	27.8	133
57	Structural Insights into the Down-regulation of Overexpressed p185 Protein of Transformed Cells by the Antibody chA21*. Journal of Biological Chemistry, 2011, 286, 31676-31683.	3.4	28
58	Crystal structure of human osteoclast stimulating factor. Proteins: Structure, Function and Bioinformatics, 2009, 75, 245-251.	2.6	6
59	Monomeric tRNA (m ⁷ G46) methyltransferase from <i>Escherichia coli</i> presents a novel structure at the functionâ€essential insertion. Proteins: Structure, Function and Bioinformatics, 2009, 76, 512-515.	2.6	11
60	Crystal structure of NusG Nâ€terminal (NGN) domain from <i>Methanocaldococcus jannaschii</i> and its interaction with rpoE″. Proteins: Structure, Function and Bioinformatics, 2009, 76, 787-793.	2.6	10
61	Crystallization and preliminary crystallographic analysis of the second RRM of Pub1 fromSaccharomyces cerevisiae. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 108-110.	0.7	1
62	Crystallization and preliminary crystallographic studies of the single-chain variable fragment of antibody chA21 in complex with an N-terminal fragment of ErbB2. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 692-694.	0.7	3
63	Crystallization and preliminary crystallographic analysis of tRNA (m7G46) methyltransferase fromEscherichia coli. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 743-745.	0.7	4