Julia R Greer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7025182/publications.pdf

Version: 2024-02-01

		19608	16605
134	15,454	61	123
papers	citations	h-index	g-index
139	139	139	10764
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Additive manufacturing of 3D batteries: a perspective. Journal of Materials Research, 2022, 37, 1535-1546.	1.2	6
2	Responsive materials architected in space and time. Nature Reviews Materials, 2022, 7, 683-701.	23.3	80
3	Hydrogelâ€Based Additive Manufacturing of Lithium Cobalt Oxide. Advanced Materials Technologies, 2021, 6, 2000791.	3.0	17
4	3D Architected Carbon Electrodes for Energy Storage. Advanced Energy Materials, 2021, 11, 2002637.	10.2	39
5	Thermal stability of thin Au films deposited on salt whiskers. Acta Materialia, 2021, 205, 116537.	3.8	5
6	Stimuli Responsive Shape Memory Microarchitectures. Advanced Functional Materials, 2021, 31, 2008380.	7.8	22
7	<scp>Threeâ€dimensional</scp> chemical reactors: ⟨i⟩in situ materials synthesis to advance vat photopolymerization. Polymer International, 2021, 70, 964-976.	1.6	19
8	Nanofibril-mediated fracture resistance of bone. Bioinspiration and Biomimetics, 2021, 16, 035001.	1.5	12
9	Understanding and mitigating mechanical degradation in lithium–sulfur batteries: additive manufacturing of Li2S composites and nanomechanical particle compressions. Journal of Materials Research, 2021, 36, 3656-3666.	1.2	6
10	All-day fresh water harvesting by microstructured hydrogel membranes. Nature Communications, 2021, 12, 2797.	5.8	159
11	3D-Printed Drug Capture Materials Based on Genomic DNA Coatings. ACS Applied Materials & Samp; Interfaces, 2021, 13, 41424-41434.	4.0	4
12	Supersonic impact resilience of nanoarchitected carbon. Nature Materials, 2021, 20, 1491-1497.	13.3	73
13	Failure Mechanisms in Vertically Aligned Dense Nanowire Arrays. Nano Letters, 2021, 21, 7542-7547.	4.5	1
14	Dispersion Mapping in 3-Dimensional Core–Shell Photonic Crystal Lattices Capable of Negative Refraction in the Mid-Infrared. Nano Letters, 2021, 21, 9102-9107.	4.5	8
15	From ion to atom to dendrite: Formation and nanomechanical behavior of electrodeposited lithium. MRS Bulletin, 2020, 45, 891-904.	1.7	9
16	Pushing and Pulling on Ropes: Hierarchical Woven Materials. Advanced Science, 2020, 7, 2001271.	5.6	20
17	Miniaturization of a-Si guided mode resonance filter arrays for near-IR multi-spectral filtering. Applied Physics Letters, 2020, 117, .	1.5	10
18	Effect of temperature on small-scale deformation of individual face-centered-cubic and body-centered-cubic phases of an Al0.7CoCrFeNi high-entropy alloy. Materials and Design, 2020, 191, 108611.	3.3	19

#	Article	IF	Citations
19	Extreme mechanical resilience of self-assembled nanolabyrinthine materials. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5686-5693.	3.3	87
20	Additive Manufacturing of High-Refractive-Index, Nanoarchitected Titanium Dioxide for 3D Dielectric Photonic Crystals. Nano Letters, 2020, 20, 3513-3520.	4.5	59
21	Energy-based approach for failure assessment of 3D architectured materials. Procedia Structural Integrity, 2020, 28, 2181-2186.	0.3	0
22	Recoverable Electrical Breakdown Strength and Dielectric Constant in Ultralow- <i>k</i> Nanolattice Capacitors. Nano Letters, 2019, 19, 5689-5696.	4.5	7
23	Theoretical strength and rubber-like behaviour in micro-sized pyrolytic carbon. Nature Nanotechnology, 2019, 14, 762-769.	15.6	80
24	Yield Precursor Dislocation Avalanches in Small Crystals: The Irreversibility Transition. Physical Review Letters, 2019, 123, 035501.	2.9	15
25	Three-dimensional architected materials and structures: Design, fabrication, and mechanical behavior. MRS Bulletin, 2019, 44, 750-757.	1.7	65
26	Electrochemically reconfigurable architected materials. Nature, 2019, 573, 205-213.	13.7	145
27	Structural color three-dimensional printing by shrinking photonic crystals. Nature Communications, 2019, 10, 4340.	5.8	184
28	Computationally efficient design of directionally compliant metamaterials. Nature Communications, 2019, 10, 291.	5.8	36
29	Additive Manufacturing of 3Dâ€Architected Multifunctional Metal Oxides. Advanced Materials, 2019, 31, e1901345.	11.1	68
30	Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6665-6672.	3.3	158
31	Rechargeable-battery chemistry based on lithium oxide growth through nitrate anion redox. Nature Chemistry, 2019, 11, 1133-1138.	6.6	31
32	Polarization-Independent, Narrowband, Near-IR Spectral Filters via Guided Mode Resonances in Ultrathin a-Si Nanopillar Arrays. ACS Photonics, 2019, 6, 265-271.	3.2	33
33	Discreteâ€Continuum Duality of Architected Materials: Failure, Flaws, and Fracture. Advanced Functional Materials, 2019, 29, 1806772.	7.8	26
34	Tuning crystallographic compatibility to enhance shape memory in ceramics. Physical Review Materials, 2019, 3, .	0.9	14
35	Irradiation Enhances Strength and Deformability of Nanoâ€Architected Metallic Glass. Advanced Engineering Materials, 2018, 20, 1701055.	1.6	13
36	Additive manufacturing of polymer-derived titania for one-step solar water purification. Materials Today Communications, 2018, 15, 288-293.	0.9	55

#	Article	IF	CITATIONS
37	Additive Manufacturing of Nano- and Microarchitected Materials. Nano Letters, 2018, 18, 2187-2188.	4.5	24
38	Additive manufacturing of 3D nano-architected metals. Nature Communications, 2018, 9, 593.	5.8	372
39	Highâ€ S trength Nanotwinned Al Alloys with 9R Phase. Advanced Materials, 2018, 30, 1704629.	11.1	93
40	Impact of node geometry on the effective stiffness of non-slender three-dimensional truss lattice architectures. Extreme Mechanics Letters, 2018, 22, 138-148.	2.0	69
41	Ultralow Thermal Conductivity and Mechanical Resilience of Architected Nanolattices. Nano Letters, 2018, 18, 4755-4761.	4.5	55
42	Bioâ€Mimicked Silica Architectures Capture Geometry, Microstructure, and Mechanical Properties of Marine Diatoms. Advanced Engineering Materials, 2018, 20, 1800301.	1.6	12
43	Osteogenic cell functionality on 3-dimensional nano-scaffolds with varying stiffness. Extreme Mechanics Letters, 2017, 13, 1-9.	2.0	15
44	Ordering and dimensional crossovers in metallic glasses and liquids. Physical Review B, 2017, 95, .	1.1	8
45	Functionalized 3D Architected Materials via Thiolâ€Michael Addition and Twoâ€Photon Lithography. Advanced Materials, 2017, 29, 1605293.	11.1	62
46	Designing core-shell 3D photonic crystal lattices for negative refraction. Proceedings of SPIE, 2017, , .	0.8	3
47	3D nano-architected metallic glass: Size effect suppresses catastrophic failure. Acta Materialia, 2017, 133, 393-407.	3.8	63
48	Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 57-61.	3.3	206
49	Reexamining the mechanical property space of three-dimensional lattice architectures. Acta Materialia, 2017, 140, 424-432.	3.8	179
50	Three-dimensional nano-architected scaffolds with tunable stiffness for efficient bone tissue growth. Acta Biomaterialia, 2017, 63, 294-305.	4.1	65
51	Probing Microplasticity in Small-Scale FCC Crystals via Dynamic Mechanical Analysis. Physical Review Letters, 2017, 118, 155501.	2.9	18
52	Enabling Simultaneous Extreme Ultra Low- <i>k</i> in Stiff, Resilient, and Thermally Stable Nano-Architected Materials. Nano Letters, 2017, 17, 7737-7743.	4.5	30
53	Cross-Split of Dislocations: An Athermal and Rapid Plasticity Mechanism. Scientific Reports, 2016, 6, 25966.	1.6	19
54	Microstructure and small-scale size effects in plasticity of individual phases of Al0.7CoCrFeNi High Entropy alloy. Extreme Mechanics Letters, 2016, 8, 220-228.	2.0	47

#	Article	IF	CITATIONS
55	The nanocomposite nature of bone drives its strength and damage resistance. Nature Materials, 2016, 15, 1195-1202.	13.3	171
56	Substantial tensile ductility in sputtered Zr-Ni-Al nano-sized metallic glass. Acta Materialia, 2016, 118, 270-285.	3.8	52
57	In Situ Lithiation–Delithiation of Mechanically Robust Cu–Si Core–Shell Nanolattices in a Scanning Electron Microscope. ACS Energy Letters, 2016, 1, 492-499.	8.8	47
58	Exceptional Resilience of Small-Scale Au ₃₀ Cu ₂₅ Zn ₄₅ under Cyclic Stress-Induced Phase Transformation. Nano Letters, 2016, 16, 7621-7625.	4.5	34
59	A Molten Salt Lithium–Oxygen Battery. Journal of the American Chemical Society, 2016, 138, 2656-2663.	6.6	114
60	Tunable Microfibers Suppress Fibrotic Encapsulation via Inhibition of TGF \hat{I}^2 Signaling. Tissue Engineering - Part A, 2016, 22, 142-150.	1.6	6
61	Microstructure provides insights into evolutionary design and resilience of <i>Coscinodiscus</i> sp. frustule. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2017-2022.	3.3	75
62	Materials by design: Using architecture in material design to reach new property spaces. MRS Bulletin, 2015, 40, 1122-1129.	1.7	45
63	Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes. Scientific Reports, 2015, 5, 16493.	1.6	104
64	Ultra-strong architected Cu meso-lattices. Extreme Mechanics Letters, 2015, 2, 7-14.	2.0	144
65	Tailoring of Interfacial Mechanical Shear Strength by Surface Chemical Modification of Silicon Microwires Embedded in Nafion Membranes. ACS Nano, 2015, 9, 5143-5153.	7.3	18
66	Three-Dimensional Au Microlattices as Positive Electrodes for Li–O ₂ Batteries. ACS Nano, 2015, 9, 5876-5883.	7.3	80
67	Size Effect Suppresses Brittle Failure in Hollow Cu ₆₀ Zr ₄₀ Metallic Glass Nanolattices Deformed at Cryogenic Temperatures. Nano Letters, 2015, 15, 5673-5681.	4.5	77
68	Resilient 3D hierarchical architected metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11502-11507.	3.3	496
69	Surface roughness imparts tensile ductility to nanoscale metallic glasses. Extreme Mechanics Letters, 2015, 5, 88-95.	2.0	24
70	Fractal atomic-level percolation in metallic glasses. Science, 2015, 349, 1306-1310.	6.0	114
71	Design and Fabrication of Hollow Rigid Nanolattices via Twoâ€ <scp>P</scp> hoton Lithography. Advanced Engineering Materials, 2014, 16, 184-189.	1.6	68
72	Grain Boundary Sliding in Aluminum Nanoâ€Biâ€Crystals Deformed at Room Temperature. Small, 2014, 10, 100-108.	5.2	30

#	Article	IF	CITATIONS
73	Mechanical characterization of hollow ceramic nanolattices. Journal of Materials Science, 2014, 49, 2496-2508.	1.7	99
74	Nanoframe Catalysts. Science, 2014, 343, 1319-1320.	6.0	22
75	Deformation of as-fabricated and helium implanted 100nm-diameter iron nano-pillars. Materials Science & Deformation of as-fabricated and Processing, 2014, 612, 316-325.	2.6	36
76	Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science, 2014, 345, 1322-1326.	6.0	1,080
77	Cold-temperature deformation of nano-sized tungsten and niobium as revealed by in-situ nano-mechanical experiments. Science China Technological Sciences, 2014, 57, 652-662.	2.0	39
78	Effects of Helium Implantation on the Tensile Properties and Microstructure of Ni ₇₃ P ₂₇ Metallic Glass Nanostructures. Nano Letters, 2014, 14, 5176-5183.	4.5	55
79	Fabrication and Deformation of Metallic Glass Micro‣attices. Advanced Engineering Materials, 2014, 16, 889-896.	1.6	50
80	Mechanisms of Failure in Nanoscale Metallic Glass. Nano Letters, 2014, 14, 5858-5864.	4.5	78
81	It's all about imperfections. Nature Materials, 2013, 12, 689-690.	13.3	48
82	Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nature Materials, 2013, 12, 893-898.	13.3	423
83	Cryogenic nanoindentation size effect in $[0\ 0\ 1]$ -oriented face-centered cubic and body-centered cubic single crystals. Applied Physics Letters, 2013, 103, .	1.5	26
83	Cryogenic nanoindentation size effect in [0 0 1]-oriented face-centered cubic and body-centered cubic single crystals. Applied Physics Letters, 2013, 103, . Buckling-driven delamination of carbon nanotube forests. Applied Physics Letters, 2013, 102, .	1.5	26
	single crystals. Applied Physics Letters, 2013, 103, .		
84	Buckling-driven delamination of carbon nanotube forests. Applied Physics Letters, 2013, 102, . Modeling dislocation nucleation strengths in pristine metallic nanowires under experimental	1.5	22
84	Buckling-driven delamination of carbon nanotube forests. Applied Physics Letters, 2013, 102, . Modeling dislocation nucleation strengths in pristine metallic nanowires under experimental conditions. Acta Materialia, 2013, 61, 2244-2259. Microstructure versus Flaw: Mechanisms of Failure and Strength in Nanostructures. Nano Letters,	1.5 3.8	22 51
84 85 86	Buckling-driven delamination of carbon nanotube forests. Applied Physics Letters, 2013, 102, . Modeling dislocation nucleation strengths in pristine metallic nanowires under experimental conditions. Acta Materialia, 2013, 61, 2244-2259. Microstructure versus Flaw: Mechanisms of Failure and Strength in Nanostructures. Nano Letters, 2013, 13, 5703-5709.	1.5 3.8 4.5	22 51 58
84 85 86	Buckling-driven delamination of carbon nanotube forests. Applied Physics Letters, 2013, 102, . Modeling dislocation nucleation strengths in pristine metallic nanowires under experimental conditions. Acta Materialia, 2013, 61, 2244-2259. Microstructure versus Flaw: Mechanisms of Failure and Strength in Nanostructures. Nano Letters, 2013, 13, 5703-5709. Fatigue deformation of microsized metallic glasses. Scripta Materialia, 2013, 68, 773-776. Local Relative Density Modulates Failure and Strength in Vertically Aligned Carbon Nanotubes. ACS	1.5 3.8 4.5	22515832

#	Article	IF	CITATIONS
91	The mechanical behavior and deformation of bicrystalline nanowires. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 015004.	0.8	27
92	Statistics of Dislocation Slip Avalanches in Nanosized Single Crystals Show Tuned Critical Behavior Predicted by a Simple Mean Field Model. Physical Review Letters, 2012, 109, 095507.	2.9	170
93	Higher Recovery and Better Energy Dissipation at Faster Strain Rates in Carbon Nanotube Bundles: An <i>in-Situ</i> Study. ACS Nano, 2012, 6, 2189-2197.	7.3	96
94	Effects of morphology on the micro-compression response of carbon nanotube forests. Nanoscale, 2012, 4, 3373.	2.8	32
95	A microstructurally motivated description of the deformation of vertically aligned carbon nanotube structures. Applied Physics Letters, 2012, 100, .	1.5	15
96	Size-Dependent Deformation of Nanocrystalline Pt Nanopillars. Nano Letters, 2012, 12, 6385-6392.	4.5	162
97	Exploring Deformation Mechanisms in Nanostructured Materials. Jom, 2012, 64, 1241-1252.	0.9	33
98	Deformation mechanisms in nanotwinned metal nanopillars. Nature Nanotechnology, 2012, 7, 594-601.	15.6	385
99	Suppression of Catastrophic Failure in Metallic Glass–Polyisoprene Nanolaminate Containing Nanopillars. Advanced Functional Materials, 2012, 22, 1972-1980.	7.8	46
100	Nanoshearing. Materials Today, 2012, 15, 127.	8.3	2
101	Continuum modeling of dislocation starvation and subsequent nucleation in nano-pillar compressions. Scripta Materialia, 2012, 66, 93-96.	2.6	23
102	Atomistic simulations and continuum modeling of dislocation nucleation and strength in gold nanowires. Journal of the Mechanics and Physics of Solids, 2012, 60, 84-103.	2.3	107
103	Catastrophic vs Gradual Collapse of Thin-Walled Nanocrystalline Ni Hollow Cylinders As Building Blocks of Microlattice Structures. Nano Letters, 2011, 11, 4118-4125.	4.5	34
104	Protocols for the Optimal Design of Multiâ€Functional Cellular Structures: From Hypersonics to Microâ€Architected Materials. Journal of the American Ceramic Society, 2011, 94, s15.	1.9	113
105	Analysis of uniaxial compression of vertically aligned carbon nanotubes. Journal of the Mechanics and Physics of Solids, 2011, 59, 2227-2237.	2.3	80
106	Size-induced weakening and grain boundary-assisted deformation in 60 nm grained Ni nanopillars. Scripta Materialia, 2011, 64, 77-80.	2.6	174
107	Compressive properties of interface-containing Cu–Fe nano-pillars. Scripta Materialia, 2011, 66, 272-272.	2.6	17
108	Influence of Homogeneous Interfaces on the Strength of 500 nm Diameter Cu Nanopillars. Nano Letters, 2011, 11, 1743-1746.	4. 5	93

#	Article	IF	Citations
109	Emergence of strain-rate sensitivity in Cu nanopillars: Transition from dislocation multiplication to dislocation nucleation. Acta Materialia, 2011, 59, 5627-5637.	3.8	162
110	Effects of size on the strength and deformation mechanism in Zr-based metallic glasses. International Journal of Plasticity, 2011, 27, 858-867.	4.1	141
111	Size effects in Al nanopillars: Single crystalline vs. bicrystalline. Acta Materialia, 2011, 59, 4416-4424.	3.8	162
112	Nanolaminates Utilizing Sizeâ€Dependent Homogeneous Plasticity of Metallic Glasses. Advanced Functional Materials, 2011, 21, 4550-4554.	7.8	143
113	Plastic deformation of indium nanostructures. Materials Science & Diplomation of indium nanostructures. Materials Science & Diplomatical	2.6	25
114	Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Progress in Materials Science, 2011, 56, 654-724.	16.0	1,508
115	Heterogeneous dislocation nucleation from surfaces and interfaces as governing plasticity mechanism in nanoscale metals. Journal of Materials Research, 2011, 26, 2803-2814.	1.2	22
116	Tensile deformation of electroplated copper nanopillars. Philosophical Magazine, 2011, 91, 1108-1120.	0.7	64
117	Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Materialia, 2010, 58, 2355-2363.	3.8	299
118	In situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles. Advanced Functional Materials, 2010, 20, 2338-2346.	7.8	139
119	Transition from a strong-yet-brittle to aÂstronger-and-ductile state by size reductionÂofÂmetallicAglasses. Nature Materials, 2010, 9, 215-219.	13.3	606
120	Microstructure versus Size: Mechanical Properties of Electroplated Single Crystalline Cu Nanopillars. Physical Review Letters, 2010, 104, 135503.	2.9	181
121	Fabrication and Microstructure Control of Nanoscale Mechanical Testing Specimens via Electron Beam Lithography and Electroplating. Nano Letters, 2010, 10, 69-76.	4.5	120
122	Electrostatic Switching in Vertically Oriented Nanotubes for Nonvolatile Memory Applications. Materials Research Society Symposia Proceedings, 2009, 1186, 1.	0.1	0
123	Insight into the deformation behavior of niobium single crystals under uniaxial compression and tension at the nanoscale. Scripta Materialia, 2009, 61, 300-303.	2.6	108
124	Emergence of New Mechanical Functionality in Materials via Size Reduction. Advanced Functional Materials, 2009, 19, 2880-2886.	7.8	39
125	Strain Rate Effects in the Mechanical Response of Polymerâ€Anchored Carbon Nanotube Foams. Advanced Materials, 2009, 21, 334-338.	11.1	65
126	The in-situ mechanical testing of nanoscale single-crystalline nanopillars. Jom, 2009, 61, 19-25.	0.9	73

#	Article	IF	CITATIONS
127	Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale. Acta Materialia, 2009, 57, 5245-5253.	3.8	217
128	Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: Compression experiments and dislocation dynamics simulations. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 493, 21-25.	2.6	191
129	Size-dependent mechanical properties of molybdenum nanopillars. Applied Physics Letters, 2008, 93, 101916.	1.5	61
130	Fundamental Differences in Mechanical Behavior between Two Types of Crystals at the Nanoscale. Physical Review Letters, 2008, 100, 155502.	2.9	283
131	Comment on "Effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal―Appl. Phys. Lett. 91, 111915 (2007). Applied Physics Letters, 2008, 92, 096101.	1.5	8
132	Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation. Thin Solid Films, 2007, 515, 3152-3157.	0.8	256
133	Nanoscale gold pillars strengthened through dislocation starvation. Physical Review B, 2006, 73, .	1.1	787
134	Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Materialia, 2005, 53, 1821-1830.	3.8	1,330