
Sudhahar Varadarajan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7025116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Caveolin-1 stabilizes ATP7A, a copper transporter for extracellular SOD, in vascular tissue to maintain endothelial function. American Journal of Physiology - Cell Physiology, 2020, 319, C933-C944.	2.1	12
2	Abstract 14078: Ros-dependent Sumoylation of Cu Chaperone Atox1 Drives Its Nuclear Translocation to Promote Inflammatory Angiogenesis Induced by Ischemic Injury. Circulation, 2020, 142, .	1.6	1
3	Abstract 13610: Endothelial Cu Transporter Atp7a Promotes Vegfr2 Signaling and Post-ischemic Neovascularization via Regulating Autophagy. Circulation, 2020, 142, .	1.6	0
4	Novel interaction of antioxidant-1 with TRAF4: role in inflammatory responses in endothelial cells. American Journal of Physiology - Cell Physiology, 2019, 317, C1161-C1171.	2.1	12
5	Copper Transporter ATP7A (Copper-Transporting P-Type ATPase/Menkes ATPase) Limits Vascular Inflammation and Aortic Aneurysm Development. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2320-2337.	1.1	28
6	Modification of Cardiac Progenitor Cell-Derived Exosomes by miR-322 Provides Protection against Myocardial Infarction through Nox2-Dependent Angiogenesis. Antioxidants, 2019, 8, 18.	2.2	61
7	Exercise Improves Exosome Function via Increasing Extracellular SOD and Cu transporter ATP7A to Restore the Impaired Angiogenesis in Type 2 Diabetic Mice. FASEB Journal, 2019, 33, 536.6.	0.2	0
8	Akt2 (Protein Kinase B Beta) Stabilizes ATP7A, a Copper Transporter for Extracellular Superoxide Dismutase, in Vascular Smooth Muscle. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 529-541.	1.1	31
9	PRKAA1/AMPKα1-driven glycolysis in endothelial cells exposed to disturbed flow protects against atherosclerosis. Nature Communications, 2018, 9, 4667.	5.8	82
10	Copper transporter ATP7A interacts with IQGAP1, a Rac1 binding scaffolding protein: role in PDGF-induced VSMC migration and vascular remodeling. American Journal of Physiology - Cell Physiology, 2018, 315, C850-C862.	2.1	15
11	Redox Regulation of Mitochondrial Fission Protein Drp1 by Protein Disulfide Isomerase Limits Endothelial Senescence. Cell Reports, 2018, 23, 3565-3578.	2.9	104
12	Short-term regular aerobic exercise reduces oxidative stress produced by acute high intraluminal pressure in the adipose microvasculature. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H896-H906.	1.5	19
13	Endothelial Antioxidant-1: a Key Mediator of Copper-dependent Wound Healing in vivo. Scientific Reports, 2016, 6, 33783.	1.6	55
14	Copper Transport Protein Antioxidant-1 Promotes Inflammatory Neovascularization via Chaperone and Transcription Factor Function. Scientific Reports, 2015, 5, 14780.	1.6	63
15	Renin-Angiotensin Activation and Oxidative Stress in Early Heart Failure with Preserved Ejection Fraction. BioMed Research International, 2015, 2015, 1-7.	0.9	15
16	Novel Role of Reactive Oxygen Species–Activated <i>trp</i> Melastatin Channel-2 in Mediating Angiogenesis and Postischemic Neovascularization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 877-887.	1.1	40
17	Nitroglycerin Tolerance in Caveolin-1 Deficient Mice. PLoS ONE, 2014, 9, e104101.	1.1	18
18	A novel regulator of angiogenesis in endothelial cells: 5-hydroxytriptamine 4 receptor. Angiogenesis, 2013, 16, 15-28.	3.7	18

2

#	Article	IF	CITATIONS
19	IQCAP1 links PDCF receptor-β signal to focal adhesions involved in vascular smooth muscle cell migration: role in neointimal formation after vascular injury. American Journal of Physiology - Cell Physiology, 2013, 305, C591-C600.	2.1	40
20	Copper Transporter ATP7A Protects Against Endothelial Dysfunction in Type 1 Diabetic Mice by Regulating Extracellular Superoxide Dismutase. Diabetes, 2013, 62, 3839-3850.	0.3	31
21	Novel Role of Copper Transport Protein Antioxidant-1 in Neointimal Formation After Vascular Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 805-813.	1.1	27
22	Critical Role of Endothelial Hydrogen Peroxide in Post-Ischemic Neovascularization. PLoS ONE, 2013, 8, e57618.	1.1	33
23	Role of Copper Transport Protein Antioxidant 1 in Angiotensin II–Induced Hypertension. Hypertension, 2012, 60, 476-486.	1.3	57
24	Nitroglycerin drives endothelial nitric oxide synthase activation via the phosphatidylinositol 3-kinase/protein kinase B pathway. Free Radical Biology and Medicine, 2012, 52, 427-435.	1.3	24
25	Unexpected Role of the Copper Transporter ATP7A in PDGF-Induced Vascular Smooth Muscle Cell Migration. Circulation Research, 2010, 107, 787-799.	2.0	73
26	Epoxyeicosatrienoic Acid Analogs and Vascular Function. Current Medicinal Chemistry, 2010, 17, 1181-1190.	1.2	103
27	Role of lupeol and its ester on cyclophosphamide-induced hyperlipidaemic cardiomyopathy in rats. Journal of Pharmacy and Pharmacology, 2010, 57, 1437-1444.	1.2	16
28	Mechanisms involved in oleamide-induced vasorelaxation in rat mesenteric resistance arteries. European Journal of Pharmacology, 2009, 607, 143-150.	1.7	37
29	Protective effect of lupeol and lupeol linoleate in hypercholesterolemia associated renal damage. Molecular and Cellular Biochemistry, 2008, 317, 11-20.	1.4	58
30	Antiurolithic Effect of Lupeol and Lupeol Linoleate in Experimental Hyperoxaluria. Journal of Natural Products, 2008, 71, 1509-1512.	1.5	26
31	Remedial effect of lupeol and its ester derivative on hypercholesterolemia-induced oxidative and inflammatory stresses. Nutrition Research, 2007, 27, 778-787.	1.3	22
32	Protective effect of lipoic acid on oxidative and peroxidative damage in cyclosporine A-induced renal toxicity. International Immunopharmacology, 2007, 7, 1442-1449.	1.7	32
33	Protective effect of lupeol and its ester on cardiac abnormalities in experimental hypercholesterolemia. Vascular Pharmacology, 2007, 46, 412-418.	1.0	66
34	Mitigating role of lupeol and lupeol linoleate on hepatic lipemic-oxidative injury and lipoprotein peroxidation in experimental hypercholesterolemia. Molecular and Cellular Biochemistry, 2007, 295, 189-198.	1.4	21
35	Protective role of eicosapentaenoate-lipoate (EPA-LA) derivative in combating oxidative hepatocellular injury in hypercholesterolemic atherogenesis. Atherosclerosis, 2006, 189, 115-122.	0.4	31
36	Role of lupeol and lupeol linoleate on lipemic–oxidative stress in experimental hypercholesterolemia. Life Sciences, 2006, 78, 1329-1335.	2.0	74

#	Article	IF	CITATIONS
37	Attenuation of serum lipid abnormalities and cardiac oxidative stress by eicosapentaenoate–lipoate (EPA–LA) derivative in experimental hypercholesterolemia. Clinica Chimica Acta, 2005, 355, 197-204.	0.5	16