
Mami Noda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7024681/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Daphnetin ameliorates Aβ pathogenesis via STAT3/GFAP signaling in an APP/PS1 double-transgenic mouse model of Alzheimer's disease. Pharmacological Research, 2022, 180, 106227.	3.1	11
2	Homeostatic and endocrine responses as the basis for systemic therapy with medical gases: ozone, xenon and molecular hydrogen. Medical Gas Research, 2021, 11, 174.	1.2	6
3	Neuroprotective and Preventative Effects of Molecular Hydrogen. Current Pharmaceutical Design, 2021, 27, 585-591.	0.9	8
4	Safflower leaf ameliorates cognitive impairment through moderating excessive astrocyte activation in APP/PS1 mice. Food and Function, 2021, 12, 11704-11716.	2.1	5
5	Sex Differences in Dendritic Spine Formation in the Hippocampus and Animal Behaviors in a Mouse Model of Hyperthyroidism. Frontiers in Cellular Neuroscience, 2020, 14, 268.	1.8	3
6	Extracellular pH modulation of excitatory synaptic transmission in hippocampal CA3 neurons. Journal of Neurophysiology, 2020, 123, 2426-2436.	0.9	5
7	Facilitation of microglial motility by thyroid hormones requires the presence of neurons in cell culture: A distinctive feature of the brainstem versus the cortex. Brain Research Bulletin, 2020, 157, 37-40.	1.4	2
8	<p>The Effects of 24-Week, High-Concentration Hydrogen-Rich Water on Body Composition, Blood Lipid Profiles and Inflammation Biomarkers in Men and Women with Metabolic Syndrome: A Randomized Controlled Trial</p> . Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, Volume 13, 889-896.	1.1	55
9	Hydrogen medicine: A rising star in gas medicine. Traditional Medicine and Modern Medicine, 2020, 03, 153-161.	0.2	6
10	Glioendocrine System: Effects of Thyroid Hormones in Glia and their Functions in the Central Nervous System. Medical University, 2020, 3, 1-11.	0.2	1
11	Circulating messenger for neuroprotection induced by molecular hydrogen. Canadian Journal of Physiology and Pharmacology, 2019, 97, 909-915.	0.7	8
12	Metabolic Plasticity of Astrocytes and Aging of the Brain. International Journal of Molecular Sciences, 2019, 20, 941.	1.8	62
13	Neuropathic pain inhibitor, RAP-103, is a potent inhibitor of microglial CCL1/CCR8. Neurochemistry International, 2018, 119, 184-189.	1.9	11
14	Gliotransmitters and cytokines in the control of blood-brain barrier permeability. Reviews in the Neurosciences, 2018, 29, 567-591.	1.4	45
15	Effects of Derinat on ischemia-reperfusion-induced pressure ulcer mouse model. Journal of Pharmacological Sciences, 2018, 138, 123-130.	1.1	13
16	Thyroid Hormone in the CNS: Contribution of Neuron–Glia Interaction. Vitamins and Hormones, 2018, 106, 313-331.	0.7	35
17	Nicotine inhibits activation of microglial proton currents via interactions with α7 acetylcholine receptors. Journal of Physiological Sciences, 2017, 67, 235-245.	0.9	30
18	Complexity of Stomach–Brain Interaction Induced by Molecular Hydrogen in Parkinson's Disease Model Mice. Neurochemical Research, 2017, 42, 2658-2665.	1.6	19

Μαμι Νοda

#	Article	IF	CITATIONS
19	Hydrogen gas protects IP3Rs by reducing disulfide bridges in human keratinocytes under oxidative stress. Scientific Reports, 2017, 7, 3606.	1.6	11
20	Mechanisms of Nicotine-Induced Neuroprotection: Inhibition of NADPH Oxidase and Subsequent Proton Channel Activation by Stimulating α7 Nicotinic Acetylcholine Receptor in Activated Microglia. Advances in Neuroimmune Biology, 2016, 6, 107-115.	0.7	1
21	Dysfunction of Glutamate Receptors in Microglia May Cause Neurodegeneration. Current Alzheimer Research, 2016, 13, 381-386.	0.7	25
22	Effects of 3,3',5â€ŧriiodothyronine on microglial functions. Glia, 2015, 63, 906-920.	2.5	38
23	Possible role of glial cells in the relationship between thyroid dysfunction and mental disorders. Frontiers in Cellular Neuroscience, 2015, 9, 194.	1.8	39
24	Derinat Protects Skin against Ultraviolet-B (UVB)-Induced Cellular Damage. Molecules, 2015, 20, 20297-20311.	1.7	21
25	Induction of interleukinâ€1β by activated microglia is a prerequisite for immunologically induced fatigue. European Journal of Neuroscience, 2014, 40, 3253-3263.	1.2	39
26	Possible Therapeutic Targets in Microglia. , 2014, , 293-313.		1
27	Calcium Influx Through Reversed NCX Controls Migration of Microglia. Advances in Experimental Medicine and Biology, 2013, 961, 289-294.	0.8	22
28	Effects of chemokine (C–C motif) ligand 1 on microglial function. Biochemical and Biophysical Research Communications, 2013, 436, 455-461.	1.0	23
29	Expression, subunit composition, and function of AMPAâ€type glutamate receptors are changed in activated microglia; possible contribution of GluA2 (GluRâ€B)â€deficiency under pathological conditions. Glia, 2013, 61, 881-891.	2.5	34
30	IL-6 Receptor Is a Possible Target against Growth of Metastasized Lung Tumor Cells in the Brain. International Journal of Molecular Sciences, 2013, 14, 515-526.	1.8	12
31	Oral â€`hydrogen water' induces neuroprotective ghrelin secretion in mice. Scientific Reports, 2013, 3, 3273.	1.6	58
32	Possible Contribution of Microglial Glutamate Receptors to Inflammatory Response upon Neurodegenerative Diseases. Journal of Neurological Disorders, 2013, 01, .	0.1	8
33	The Brain Microenvironment. , 2012, , 43-54.		0
34	Therapeutic Approach to Neurodegenerative Diseases by Medical Gases: Focusing on Redox Signaling and Related Antioxidant Enzymes. Oxidative Medicine and Cellular Longevity, 2012, 2012, 1-9.	1.9	41
35	Physiology of Microglia. Physiological Reviews, 2011, 91, 461-553.	13.1	2,990
36	Therapeutic Effects of Hydrogen in Animal Models of Parkinson's Disease. Parkinson's Disease, 2011, 2011, 1-9.	0.6	13

Mami Noda

#	Article	IF	CITATIONS
37	The Principle and the Potential Approach to ROS-dependent Cytotoxicity by Non-pharmaceutical Therapies: Optimal Use of Medical Gases with Antioxidant Properties. Current Pharmaceutical Design, 2011, 17, 2253-2263.	0.9	11
38	Neuropeptides as Attractants of Immune Cells in the Brain and their Distinct Signaling. Advances in Neuroimmune Biology, 2011, 1, 53-62.	0.7	5
39	Functional importance of inositolâ€1,4,5â€triphosphateâ€induced intracellular Ca ²⁺ mobilization in galaninâ€induced microglial migration. Journal of Neurochemistry, 2011, 117, 61-70.	2.1	21
40	Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the microenvironment of brain metastasis. Clinical and Experimental Metastasis, 2011, 28, 13-25.	1.7	160
41	6 Kallikrein-kinin system in the brain. , 2011, , 85-102.		0
42	Glial Cells in Brain Defense Mechanisms. NeuroImmune Biology, 2010, , 161-167.	0.2	1
43	Hydrogen in Drinking Water Reduces Dopaminergic Neuronal Loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Mouse Model of Parkinson's Disease. PLoS ONE, 2009, 4, e7247.	1.1	170
44	Bradykinin-Induced Microglial Migration Mediated by B ₁ -Bradykinin Receptors Depends on Ca ²⁺ Influx via Reverse-Mode Activity of the Na ⁺ /Ca ²⁺ Exchanger. Journal of Neuroscience, 2007, 27, 13065-13073.	1.7	119
45	Multifunctional effects of bradykinin on glial cells in relation to potential anti-inflammatory effects. Neurochemistry International, 2007, 51, 185-191.	1.9	40
46	Cyclic ADP-ribose as a universal calcium signal molecule in the nervous system. Neurochemistry International, 2007, 51, 192-199.	1.9	77
47	Neuroprotective role of bradykinin because of the attenuation of pro-inflammatory cytokine release from activated microglia. Journal of Neurochemistry, 2007, 101, 397-410.	2.1	116
48	Parkin potentiates ATP-induced currents due to activation of P2X receptors in PC12 cells. Journal of Cellular Physiology, 2006, 209, 172-182.	2.0	26
49	Anti-inflammatory effects of kinins via microglia in the central nervous system. Biological Chemistry, 2006, 387, 167-171.	1.2	17
50	Potentiation of ATP-induced currents due to the activation of P2X receptors by ubiquitin carboxy-terminal hydrolase L1. Journal of Neurochemistry, 2005, 92, 1061-1072.	2.1	15
51	Multiple Signal Transduction Pathways Mediated by 5-HT Receptors. Molecular Neurobiology, 2004, 29, 31-40.	1.9	60
52	Heterogeneity and potentiation of AMPA type of glutamate receptors in rat cultured microglia. Glia, 2004, 47, 68-77.	2.5	75
53	Kinin receptors in cultured rat microglia. Neurochemistry International, 2004, 45, 437-442.	1.9	33
54	Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Human Molecular Genetics, 2003, 12, 1945-1958.	1.4	328

Mami Noda

#	Article	IF	CITATIONS
55	Recombinant human serotonin 5A receptors stably expressed in C6 glioma cells couple to multiple signal transduction pathways. Journal of Neurochemistry, 2003, 84, 222-232.	2.1	53
56	Expression and function of bradykinin receptors in microglia. Life Sciences, 2003, 72, 1573-1581.	2.0	61
57	Measurement of adenylyl cyclase by separating cyclic AMP on silica gel thin-layer chromatography. Analytical Biochemistry, 2002, 308, 106-111.	1.1	12
58	Cyclic ADP-ribose as a second messenger revisited from a new aspect of signal transduction from receptors to ADP-ribosyl cyclase. , 2001, 90, 283-296.		59
59	Signal Transduction from Bradykinin, Angiotensin, Adrenergic and Muscarinic Receptors to Effector Enzymes, Including ADP-Ribosyl Cyclase. Biological Chemistry, 2001, 382, 23-30.	1.2	22
60	AMPA–Kainate Subtypes of Glutamate Receptor in Rat Cerebral Microglia. Journal of Neuroscience, 2000, 20, 251-258.	1.7	277
61	Muscarinic Receptor-mediated Dual Regulation of ADP-ribosyl Cyclase in NG108-15 Neuronal Cell Membranes. Journal of Biological Chemistry, 1997, 272, 31272-31277.	1.6	97
62	Inositol trisphosphate/Ca2+ as messengers of bradykinin B2 and muscarinic acetylcholine ml-m4 receptors in neuroblastoma-derived hybrid cells. Journal of Lipid Mediators and Cell Signalling, 1996, 14, 175-185.	1.0	15
63	Inositol 1,4,5-trisphosphate formation and ryanodine-sensitive oscillations of cytosolic free Ca2+ concentrations in neuroblastoma�fbiroblast hybrid NL308 cells expressing m2 and m4 muscarinic acetylcholine receptor subtypes. Pflugers Archiv European Journal of Physiology, 1995, 429, 426-433.	1.3	11
64	A novel strategy for treating cancer: understanding the role of Ca2+ signaling from nociceptive TRP channels in regulating cancer progression. Exploration of Targeted Anti-tumor Therapy, 0, , .	0.5	1